gpt4 book ai didi

python - Pandas 是从不同数据帧中添加值计数的更好方法

转载 作者:行者123 更新时间:2023-11-30 22:20:49 25 4
gpt4 key购买 nike

pd.read_table('file.csv', chunksize=50000 ) 正在读取一个巨大的 CSV 文件。 。目前,在每次循环迭代中,我都会阅读 value_counts使用 df.col.value_counts() 与当前 block 相关方法。我通过 numpy 的循环和技巧让它工作,但我想知道是否有更干净的方法使用 pandas 来做到这一点?

代码:

prev = None

# LOOP CHUNK DATA
for imdb_basics in pd.read_table(
'data/imdb.title.basics.tsv',
dtype={'tconst':str,'originalTitle':str,'startYear':str },
usecols=['tconst','originalTitle','startYear'],
chunksize=50000,
sep='\t'
):
# REMOVE NULL DATA & CONVERT TO NUMBER
imdb_basics.startYear = imdb_basics.startYear.replace( "\\N", 0 )
imdb_basics.startYear = pd.to_numeric( imdb_basics.startYear )

# --- loops and tricks --- !

tmp = imdb_basics.startYear.value_counts( sort=False )

current = {
'year': list( tmp.keys() ),
'count': list( tmp.values )
}
if prev is None :
prev = current
else:
for i in range( len( prev['year'] ) ):
for j in range( len( current['year'] ) ):
if prev['year'][i] == current['year'][j]:
prev['count'][i] += current['count'][j]
for i in range( len( current['year'] ) ):
if not ( current['year'][i] in prev['year'] ):
prev['year'].append( current['year'][i] )
prev['count'].append( current['count'][i] )

编辑:我正在处理一个大数据文件,而且我当前使用的远程计算机的内存量非常有限,因此无法删除 pandas 中的分块。

最佳答案

正如我在评论中所说,您无需担心 key 管理。 Pandas 可以为你做这一切。考虑这个简单的示例,其中包含一些带有年份列和其他列的模拟数据:

from io import StringIO
import numpy
import pandas
numpy.random.seed(0)

# years to chose from
years = numpy.arange(2000, 2017)

# relative probabilities of a year being selected (2000 should be absent)
weights = numpy.linspace(0.0, 0.7, num=len(years))
weights /= weights.sum()

# fake dataframe turned into a fake CSV
x = numpy.random.choice(years, size=200, p=weights)
text = pandas.DataFrame({
'year': x,
'value': True
}).to_csv()

由于这是一个小文件,我们可以一次读取所有内容以获得“正确”答案

pandas.read_csv(StringIO(text))['year'].value_counts().sort_index()
2001 1
2002 6
2003 2
2004 6
2005 6
2006 11
2007 9
2008 12
2009 13
2010 9
2011 18
2012 16
2013 29
2014 20
2015 21
2016 21
Name: year, dtype: int64

好的,现在让我们尝试使用 pandas 方法进行分块:

result = None
for chunk in pandas.read_csv(StringIO(text), chunksize=25):
tmp = chunk['year'].value_counts()
if result is None: # first chunk
result = tmp.copy()
else: # all other chunks
result = result.add(tmp, fill_value=0).astype(int)

final = result.sort_index()
final
2001 1
2002 6
2003 2
2004 6
2005 6
2006 11
2007 9
2008 12
2009 13
2010 9
2011 18
2012 16
2013 29
2014 20
2015 21
2016 21
Name: year, dtype: int64

所以它有效。 Pandas 将在基本操作期间对齐并填充索引。

关于python - Pandas 是从不同数据帧中添加值计数的更好方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48770079/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com