gpt4 book ai didi

Python通过groupby进行求和运算,但排除非数字数据

转载 作者:行者123 更新时间:2023-11-30 22:19:55 26 4
gpt4 key购买 nike

如何在 python 中使用 csv 文件中的 groupby 进行求和运算,但从该 groupby 中排除一些非数字数据?例如。我有 csv 文件:

id  | filename                  | #Line_Changed
-----------------------------------------------
1 | analyze/dir_list.txt | 16
2 | metrics/metrics1.csv | 11
3 | metrics/metrics2.csv | 15
4 | analyze/dir_list.txt | =>
5 | metrics/metrics1.csv | 11
6 | metrics/metrics2.csv | bin
7 | metrics/metrics2.csv | 4
8 | analyze/dir_list.txt | 4

我想按“文件名”列进行分组,并且仅计算仅包含数字数据的行的总和,并排除非数字数据。结果应该如下所示:

  filename                  | SUM #Line_Changed
-----------------------------------------------
analyze/dir_list.txt | 20
metrics/metrics1.csv | 22
metrics/metrics2.csv | 19

到目前为止我做了什么:

df = pd.read_csv('diffhistogram.csv')
by_fn = df.groupby('filename')
mydata = {}
for name in ['#line_changed']:
mydata['SUM ' + name] = by_fn[name].sum()
output = pd.DataFrame(mydata)
print(output)

但输出假定“#line_changed”列中的数据为字符串:

  filename                  | SUM #Line_Changed
-----------------------------------------------
analyze/dir_list.txt | 16=>4
metrics/metrics1.csv | 1111
metrics/metrics2.csv | 15bin4

有没有办法可以指定 sum() 运算中要包含哪些数字数据以及要排除哪些非数字数据?

最佳答案

我认为你需要to_numeric使用参数 errors='coerce' 将非数字转换为 NaN,然后 groupby + sum 忽略此行:

df = (pd.to_numeric(df['#Line_Changed'], errors='coerce')
.groupby(df['filename'])
.sum()
.to_frame()
.add_prefix('SUM ')
.reset_index())

print (df)
filename SUM #Line_Changed
0 analyze/dir_list.txt 20.0
1 metrics/metrics1.csv 22.0
2 metrics/metrics2.csv 19.0

或者分配给用于groupby的新列:

df['SUM #Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
df = df.groupby('filename', as_index=False)['SUM #Line_Changed'].sum()

print (df)
filename SUM #Line_Changed
0 analyze/dir_list.txt 20.0
1 metrics/metrics1.csv 22.0
2 metrics/metrics2.csv 19.0

详细信息:

df['SUM #Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
print (df)
id filename #Line_Changed SUM #Line_Changed
0 1 analyze/dir_list.txt 16 16.0
1 2 metrics/metrics1.csv 11 11.0
2 3 metrics/metrics2.csv 15 15.0
3 4 analyze/dir_list.txt => NaN
4 5 metrics/metrics1.csv 11 11.0
5 6 metrics/metrics2.csv bin NaN
6 7 metrics/metrics2.csv 4 4.0
7 8 analyze/dir_list.txt 4 4.0

编辑:

如果想从原始DataFrame中删除非数字行:

df['#Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
df = df.dropna(subset=['#Line_Changed'])
print (df)
id filename #Line_Changed
0 1 analyze/dir_list.txt 16.0
1 2 metrics/metrics1.csv 11.0
2 3 metrics/metrics2.csv 15.0
4 5 metrics/metrics1.csv 11.0
6 7 metrics/metrics2.csv 4.0
7 8 analyze/dir_list.txt 4.0

关于Python通过groupby进行求和运算,但排除非数字数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48971879/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com