gpt4 book ai didi

python - Inverse_transform方法(LabelEncoder)

转载 作者:行者123 更新时间:2023-11-30 22:05:54 24 4
gpt4 key购买 nike

您可以在下面找到我在互联网上找到的用于构建简单神经网络的代码。一切正常。我对 y 标签进行了编码,这些是我得到的预测:

2 0 1 2 1 2 2 0 2 1 0 0 0 1 1 1 1 1 1 1 2 1 2 1 0 1 0 1 0 2

所以现在我需要将其转换回原来的 Iris 类(Iris-Virginica、Setosa、Versicolor)。我需要使用 inverse_transform 方法。你能帮忙吗?

    import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report, confusion_matrix


# Location of dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

# Assign colum names to the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']

# Read dataset to pandas dataframe
irisdata = pd.read_csv(url, names=names)

irisdata.head()
#head_tableau=irisdata.head()
#print(head_tableau)

# Assign data from first four columns to X variable
X = irisdata.iloc[:, 0:4]

# Assign data from first fifth columns to y variable
y = irisdata.select_dtypes(include=[object])

y.head()
#afficher_y=y.head()
#print(afficher_y)

y.Class.unique()
#affiche=y.Class.unique()
#print(affiche)

le = preprocessing.LabelEncoder()

y = y.apply(le.fit_transform)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)

mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)
mlp.fit(X_train, y_train.values.ravel())

predictions = mlp.predict(X_test)
print(predictions)

最佳答案

你走在正确的道路上:

In [7]: le.inverse_transform(predictions[:5])
Out[7]:
array(['Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',
'Iris-virginica'], dtype=object)

关于python - Inverse_transform方法(LabelEncoder),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52870022/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com