gpt4 book ai didi

c - CUDA和主机上的图像处理输出不同

转载 作者:行者123 更新时间:2023-11-30 20:25:31 27 4
gpt4 key购买 nike

我使用 Quadro NVS 290 在 CUDA-C 中进行图像处理。为了验证 GPU 上的执行时间,我也在主机上进行处理。结果发现,GPU 上的执行时间比 CPU 多,而且输出图像也不同。我在这里使用的算法是对 512x512 Lema 图像进行三度模糊的高斯模糊。此外,此代码不适用于其他图像尺寸和灰度图像。

代码是:

unsigned int width, height;

int mask[3][3] = { 1, 2, 1,
2, 4, 2,
1, 2, 1
};

int h_getPixel(unsigned char *arr, int col, int row, int k)
{
int sum = 0;
int denom = 0;

for (int j = -1; j <= 1; j++)
{
for (int i = -1; i <= 1; i++)
{
if ((row + j) >= 0 && (row + j) < height && (col + i) >= 0 && (col + i) < width)
{
int color = arr[(row + j) * 3 * width + (col + i) * 3 + k];
sum += color * mask[i + 1][j + 1];
denom += mask[i + 1][j + 1];
}
}
}

return sum / denom;
} // End getPixel

void h_blur(unsigned char *arr, unsigned char *result)
{
for (unsigned int row = 0; row < height; row++)
{
for (unsigned int col = 0; col < width; col++)
{
for (int k = 0; k < 3; k++)
{
result[3 * row * width + 3 * col + k] = h_getPixel(arr, col, row, k);
}
}
}
} // End h_blur

__global__ void d_blur(unsigned char *arr, unsigned char *result, int width, int height)
{
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;

if (row < 0 || col < 0)
return;

int mask[3][3] = { 1, 2, 1,
2, 4, 2,
1, 2, 1
};

int sum = 0;
int denom = 0;

for (int k = 0; k < 3; k++)
{
for (int j = -1; j <= 1; j++)
{
for (int i = -1; i <= 1; i++)
{
if ((row + j) >= 0 && (row + j) < height && (col + i) >= 0 && (col + i) < width)
{
int color = arr[(row + j) * 3 * width + (col + i) * 3 + k];
sum += color * mask[i + 1][j + 1];
denom += mask[i + 1][j + 1];
}
}
}

result[3 * row * width + 3 * col + k] = sum / denom;
}
}

int main(int argc, char **argv)
{
/************ Setup work ***********************/
unsigned char *d_resultPixels;
unsigned char *h_resultPixels;
unsigned char *h_devicePixels;

unsigned char *h_pixels = NULL;
unsigned char *d_pixels = NULL;

char *srcPath = .......; // input image
char *h_resultPath = ......; // host output image
char *d_resultPath = ......; // device output image

FILE *fp_input;
FILE *fp_output;
FILE *fp_d_output;

unsigned char *inputFileData;
unsigned char *output_buffer;
unsigned char *d_output_buffer;

int nBlurDegree;

inputFileData = (unsigned char *)malloc(sizeof(unsigned char) * IMAGE_BUFFER_SIZE);
output_buffer = (unsigned char *)inputFileData;
d_output_buffer = (unsigned char *)inputFileData;

/* Read the uncompressed image file */
fp_input = fopen(srcPath, "r");

fread(inputFileData, IMAGE_BUFFER_SIZE, 1, fp_input);
fclose(fp_input);

unsigned int fileSize = (inputFileData[5] << 24) | (inputFileData[4] << 16) | (inputFileData[3] << 8) | inputFileData[2];
unsigned int dataOffset = (inputFileData[13] << 24) | (inputFileData[12] << 16) | (inputFileData[11] << 8) | inputFileData[10];
unsigned int imageSize = (inputFileData[37] << 24) | (inputFileData[36] << 16) | (inputFileData[35] << 8) | inputFileData[34];

width = (inputFileData[21] << 24) | (inputFileData[20] << 16) | (inputFileData[19] << 8) | inputFileData[18];
height = (inputFileData[25] << 24) | (inputFileData[24] << 16) | (inputFileData[23] << 8) | inputFileData[22];

h_pixels = (unsigned char *)malloc(imageSize);

h_resultPixels = (unsigned char *)malloc(imageSize);

inputFileData = inputFileData + dataOffset;
memcpy((void *)h_pixels, (void *)inputFileData, imageSize);

/************************** Start host processing ************************/

clock_t cpuStartTime, cpuEndTime;

cpuStartTime = clock();

// Apply gaussian blur
for (nBlurDegree = 0; nBlurDegree < BLUR_DEGREE; nBlurDegree++)
{
memset((void *)h_resultPixels, 0, imageSize);

h_blur(h_pixels, h_resultPixels);

memcpy((void *)h_pixels, (void *)h_resultPixels, imageSize);
}

cpuEndTime = clock();

double cpuElapsedTime = (cpuEndTime - cpuStartTime) / (double)CLOCKS_PER_SEC;

printf("\nCPU time elapsed:\t%.2f ms\n", cpuElapsedTime * 1000);

inputFileData = inputFileData - dataOffset;

memcpy(output_buffer, inputFileData, dataOffset);

output_buffer = output_buffer + dataOffset;

memcpy(output_buffer, h_resultPixels, imageSize);

output_buffer = output_buffer - dataOffset;

fp_output = fopen(h_resultPath, "w");

fwrite(output_buffer, fileSize, 1, fp_output);
fclose(fp_output);

/************************** End host processing **************************/

/************************** Start device processing **********************/

cudaError_t cudaStatus;

h_devicePixels = (unsigned char *)malloc(imageSize);

cudaStatus = cudaMalloc((void **)&d_pixels, imageSize);

cudaStatus = cudaMalloc((void **)&d_resultPixels, imageSize);

cudaStatus = cudaMemcpy(d_pixels, h_pixels, imageSize, cudaMemcpyHostToDevice);

dim3 grid(16, 32);
dim3 block(32, 16);

// create CUDA event handles
cudaEvent_t gpuStartTime, gpuStopTime;
float gpuElapsedTime = 0;

cudaEventCreate(&gpuStartTime);
cudaEventCreate(&gpuStopTime);

cudaEventRecord(gpuStartTime, 0);

for (nBlurDegree = 0; nBlurDegree < BLUR_DEGREE; nBlurDegree++)
{
cudaStatus = cudaMemset(d_resultPixels, 0, imageSize);

d_blur << < grid, block >> >(d_pixels, d_resultPixels, width, height);

cudaStatus = cudaMemcpy(d_pixels, d_resultPixels, imageSize, cudaMemcpyDeviceToDevice);

cudaStatus = cudaThreadSynchronize();
}

cudaEventRecord(gpuStopTime, 0);
cudaEventSynchronize(gpuStopTime); // block until the event is actually recorded

cudaStatus = cudaMemcpy(h_devicePixels, d_resultPixels, imageSize, cudaMemcpyDeviceToHost);

cudaEventElapsedTime(&gpuElapsedTime, gpuStartTime, gpuStopTime);

printf("\nGPU time elapsed:\t%.2f ms\n", gpuElapsedTime);

memcpy(d_output_buffer, inputFileData, dataOffset);

d_output_buffer = d_output_buffer + dataOffset;

memcpy(d_output_buffer, h_devicePixels, imageSize);

d_output_buffer = d_output_buffer - dataOffset;

fp_d_output = fopen(d_resultPath, "w");

fwrite(d_output_buffer, fileSize, 1, fp_d_output);
fclose(fp_d_output);

/************************** End device processing ************************/

// Release resources
cudaEventDestroy(gpuStartTime);
cudaEventDestroy(gpuStopTime);

cudaFree(d_pixels);
cudaFree(d_resultPixels);

cudaThreadExit();

free(h_devicePixels);
free(h_pixels);
free(h_resultPixels);

return 0;
} // End main

最佳答案

您的代码存在一个问题,即数据流已损坏。

  1. h_pixels 包含您的初始数据:

    memcpy((void *)h_pixels, (void *)inputFileData, imageSize);
  2. 您将在主机模糊例程结束时用结果数据覆盖数据:

    memcpy((void *)h_pixels, (void *)h_resultPixels, imageSize);   
  3. 然后,您可以使用此模糊数据作为设备模糊例程的起点:

    cudaStatus = cudaMemcpy(d_pixels, h_pixels, imageSize, cudaMemcpyHostToDevice);

在代码中的步骤 2 和 3 之间,您不会将 h_pixels 指向的数据替换为原始起始数据。因此,期望设备模糊和主机模糊会产生相同的结果是不合理的。他们并不是从相同的数据开始的。

您的代码的另一个问题是,您的主机和设备代码之间的模糊操作存在细微差别。具体来说,在主机情况 (h_blur) 中,每次调用 h_getPixel 时,变量 sumdenom 为初始化为零(在 h_blur 中的 k 循环的每次迭代中)。

但是,在您的设备代码中,您有一个迭代 3 个颜色分量的循环,但 sumdenom 在每次迭代时都不会重置为零k 循环。

以下完整的示例修复了这些问题,并在主机和设备之间针对随机样本数据产生相同的结果:

$ cat t626.cu
#include <stdio.h>
#include <stdlib.h>

#define IMW 407
#define IMH 887
#define IMAGE_BUFFER_SIZE (IMW*IMH*3)
#define BLOCKX 16
#define BLOCKY BLOCKX
#define BLUR_DEGREE 3

unsigned int width, height;

int hmask[3][3] = { 1, 2, 1,
2, 4, 2,
1, 2, 1
};


#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL

unsigned long long dtime_usec(unsigned long long prev){
timeval tv1;
gettimeofday(&tv1,0);
return ((tv1.tv_sec * USECPSEC)+tv1.tv_usec) - prev;
}

int validate(unsigned char *d1, unsigned char *d2, int dsize){

for (int i = 0; i < dsize; i++)
if (d1[i] != d2[i]) {printf("validation mismatch at index %d, was %d, should be %d\n", i, d1[i], d2[i]); return 0;}
return 1;
}

int h_getPixel(unsigned char *arr, int col, int row, int k)
{
int sum = 0;
int denom = 0;

for (int j = -1; j <= 1; j++)
{
for (int i = -1; i <= 1; i++)
{
if ((row + j) >= 0 && (row + j) < height && (col + i) >= 0 && (col + i) < width)
{
int color = arr[(row + j) * 3 * width + (col + i) * 3 + k];
sum += color * hmask[i + 1][j + 1];
denom += hmask[i + 1][j + 1];
}
}
}

return sum / denom;
} // End getPixel

void h_blur(unsigned char *arr, unsigned char *result)
{
for (unsigned int row = 0; row < height; row++)
{
for (unsigned int col = 0; col < width; col++)
{
for (int k = 0; k < 3; k++)
{
result[3 * row * width + 3 * col + k] = h_getPixel(arr, col, row, k);
}
}
}
} // End h_blur

__global__ void d_blur(const unsigned char * __restrict__ arr, unsigned char *result, const int width, const int height)
{
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;

int mask[3][3] = { 1, 2, 1,
2, 4, 2,
1, 2, 1
};
if ((row < height) && (col < width)){
int sum = 0;
int denom = 0;

for (int k = 0; k < 3; k++)
{
for (int j = -1; j <= 1; j++)
{
for (int i = -1; i <= 1; i++)
{
if ((row + j) >= 0 && (row + j) < height && (col + i) >= 0 && (col + i) < width)
{
int color = arr[(row + j) * 3 * width + (col + i) * 3 + k];
sum += color * mask[i + 1][j + 1];
denom += mask[i + 1][j + 1];
}
}
}

result[3 * row * width + 3 * col + k] = sum / denom;
sum = 0;
denom = 0;
}
}
}

int main(int argc, char **argv)
{
/************ Setup work ***********************/
unsigned char *d_resultPixels;
unsigned char *h_resultPixels;
unsigned char *h_devicePixels;

unsigned char *h_pixels = NULL;
unsigned char *d_pixels = NULL;

int nBlurDegree;
int imageSize = sizeof(unsigned char) * IMAGE_BUFFER_SIZE;

h_pixels = (unsigned char *)malloc(imageSize);


width = IMW;
height = IMH;


h_resultPixels = (unsigned char *)malloc(imageSize);
h_devicePixels = (unsigned char *)malloc(imageSize);

for (int i = 0; i < imageSize; i++) h_pixels[i] = rand()%30;
memcpy(h_devicePixels, h_pixels, imageSize);

/************************** Start host processing ************************/
unsigned long long cputime = dtime_usec(0);
// Apply gaussian blur
for (nBlurDegree = 0; nBlurDegree < BLUR_DEGREE; nBlurDegree++)
{
memset((void *)h_resultPixels, 0, imageSize);

h_blur(h_pixels, h_resultPixels);

memcpy((void *)h_pixels, (void *)h_resultPixels, imageSize);
}
cputime = dtime_usec(cputime);


/************************** End host processing **************************/

/************************** Start device processing **********************/


cudaMalloc((void **)&d_pixels, imageSize);

cudaMalloc((void **)&d_resultPixels, imageSize);

cudaMemcpy(d_pixels, h_devicePixels, imageSize, cudaMemcpyHostToDevice);

dim3 block(BLOCKX, BLOCKY);
dim3 grid(IMW/block.x+1, IMH/block.y+1);

unsigned long long gputime = dtime_usec(0);

for (nBlurDegree = 0; nBlurDegree < BLUR_DEGREE; nBlurDegree++)
{
cudaMemset(d_resultPixels, 0, imageSize);

d_blur << < grid, block >> >(d_pixels, d_resultPixels, width, height);

cudaMemcpy(d_pixels, d_resultPixels, imageSize, cudaMemcpyDeviceToDevice);
}
cudaDeviceSynchronize();
gputime = dtime_usec(gputime);
cudaMemcpy(h_devicePixels, d_resultPixels, imageSize, cudaMemcpyDeviceToHost);

printf("GPU time: %fs, CPU time: %fs\n", gputime/(float)USECPSEC, cputime/(float)USECPSEC);

validate(h_pixels, h_devicePixels, imageSize);
/************************** End device processing ************************/

// Release resources
cudaFree(d_pixels);
cudaFree(d_resultPixels);

free(h_devicePixels);
free(h_pixels);
free(h_resultPixels);

return 0;
} // End main
$ nvcc -O3 -o t626 t626.cu
$ ./t626
GPU time: 0.001739s, CPU time: 0.057698s
$

上述计时结果(GPU 比 CPU 快约 30 倍)是在 CentOS 5.5 和 CUDA 7 RC 上使用 Quadro5000 GPU 生成的。您的 Quadro NVS 290 是一款功耗较低的 GPU,因此它的表现不佳。当我在 Quadro NVS 310 上运行此代码时,我得到的结果表明 GPU 仅比 CPU 快约 2.5 倍

关于c - CUDA和主机上的图像处理输出不同,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28496846/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com