gpt4 book ai didi

javascript - 使用 javascript 和 glsl 进行凹凸贴图

转载 作者:行者123 更新时间:2023-11-30 20:15:15 25 4
gpt4 key购买 nike

 /**
* A class creating buffers for a textured box to render it with WebGL
*/
class RasterTextureBox {
/**
* Creates all WebGL buffers for the textured box
* 6 ------- 7
* / | / |
* 3 ------- 2 |
* | | | |
* | 5 -----|- 4
* | / | /
* 0 ------- 1
* looking in negative z axis direction
* @param {WebGLContext} gl - The canvas' context
* @param {Vector} minPoint - The minimal x,y,z of the box
* @param {Vector} maxPoint - The maximal x,y,z of the box
*/
constructor(gl, minPoint, maxPoint, texture) {
this.gl = gl;
const mi = minPoint;
const ma = maxPoint;
let vertices = [
// front
mi.x, mi.y, ma.z, ma.x, mi.y, ma.z, ma.x, ma.y, ma.z,
ma.x, ma.y, ma.z, mi.x, ma.y, ma.z, mi.x, mi.y, ma.z,
// back
ma.x, mi.y, mi.z, mi.x, mi.y, mi.z, mi.x, ma.y, mi.z,
mi.x, ma.y, mi.z, ma.x, ma.y, mi.z, ma.x, mi.y, mi.z,
// right
ma.x, mi.y, ma.z, ma.x, mi.y, mi.z, ma.x, ma.y, mi.z,
ma.x, ma.y, mi.z, ma.x, ma.y, ma.z, ma.x, mi.y, ma.z,
// top
mi.x, ma.y, ma.z, ma.x, ma.y, ma.z, ma.x, ma.y, mi.z,
ma.x, ma.y, mi.z, mi.x, ma.y, mi.z, mi.x, ma.y, ma.z,
// left
mi.x, mi.y, mi.z, mi.x, mi.y, ma.z, mi.x, ma.y, ma.z,
mi.x, ma.y, ma.z, mi.x, ma.y, mi.z, mi.x, mi.y, mi.z,
// bottom
mi.x, mi.y, mi.z, ma.x, mi.y, mi.z, ma.x, mi.y, ma.z,
ma.x, mi.y, ma.z, mi.x, mi.y, ma.z, mi.x, mi.y, mi.z
];

const vertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
this.vertexBuffer = vertexBuffer;
this.elements = vertices.length / 3;

let cubeTexture = gl.createTexture();
let cubeImage = new Image();
cubeImage.onload = function () {
gl.bindTexture(gl.TEXTURE_2D, cubeTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, cubeImage);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.bindTexture(gl.TEXTURE_2D, null);
}
cubeImage.src = texture;
this.texBuffer = cubeTexture;

let uv = [
// front
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
// back
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
// right
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
// top
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
// left
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
// bottom
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
];
let uvBuffer = this.gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, uvBuffer);
gl.bufferData(this.gl.ARRAY_BUFFER, new Float32Array(uv),
gl.STATIC_DRAW);
this.texCoords = uvBuffer;
}

render(shader) {
this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.vertexBuffer);
const positionLocation = shader.getAttributeLocation("a_position");
this.gl.enableVertexAttribArray(positionLocation);
this.gl.vertexAttribPointer(positionLocation, 3, this.gl.FLOAT, false, 0, 0);

// Bind the texture coordinates in this.texCoords
// to their attribute in the shader

this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.texCoords);
const texCoordLocation = shader.getAttributeLocation("a_texCoord");
this.gl.enableVertexAttribArray(texCoordLocation);
this.gl.vertexAttribPointer(texCoordLocation, 2, this.gl.FLOAT, false, 0, 0);

this.gl.activeTexture(gl.TEXTURE0);
this.gl.bindTexture(gl.TEXTURE_2D, this.texBuffer);
shader.getUniformInt("sampler").set(0);
this.gl.drawArrays(this.gl.TRIANGLES, 0, this.elements);

this.gl.disableVertexAttribArray(positionLocation);

//disable texture vertex attrib array
this.gl.disableVertexAttribArray(texCoordLocation);
}
}

/**
* Class representing a 4x4 Matrix
*/
class Matrix {

constructor(mat) {
this.data = new Float32Array(16);
for (let row = 0; row < 4; row++) {
for (let col = 0; col < 4; col++) {
this.data[row * 4 + col] = mat[col * 4 + row];
}
}
}

getVal(row, col) {
return this.data[col * 4 + row];
}

setVal(row, col, val) {
this.data[col * 4 + row] = val;
}

static translation(translation) {

let m = Matrix.identity();
m.setVal(0, 3, translation.x);
m.setVal(1, 3, translation.y);
m.setVal(2, 3, translation.z);
return m;
}

static rotation(axis, angle) {

let m = Matrix.identity()
let sin = Math.sin(angle);
let cos = Math.cos(angle);
if (axis.x != 0) {
m.setVal(1, 1, cos);
m.setVal(1, 2, -sin);
m.setVal(2, 1, sin);
m.setVal(2, 2, cos);
} else if (axis.y != 0) {
m.setVal(0, 0, cos);
m.setVal(0, 2, sin);
m.setVal(2, 0, -sin);
m.setVal(2, 2, cos);
} else {
m.setVal(0, 0, cos);
m.setVal(0, 1, -sin);
m.setVal(1, 0, sin);
m.setVal(1, 1, cos);
}
return m;
}

static scaling(scale) {

let m = Matrix.identity();
m.setVal(0, 0, scale.x);
m.setVal(1, 1, scale.y);
m.setVal(2, 2, scale.z);
return m;
}

/**
* Constructs a lookat matrix
* @param {Vector} eye - The position of the viewer
* @param {Vector} center - The position to look at
* @param {Vector} up - The up direction
* @return {Matrix} The resulting lookat matrix
*/
static lookat(eye, center, up) {

let fBig = center.sub(eye);

// Vom Eye zum Center Punkt
let f = fBig.normalised();

// UP-Vektor
let upNorm = up.normalised();

// Kreuzprodukt
let s = f.cross(upNorm);

let u = s.normalised().cross(f);

// s, u und f sind die Vektoren des Kamerakoordinatensystems

// Lookat Matrix, 3x3 betrifft Rotation und Skalierung
let mat = new Matrix([
s.x, s.y, s.z, 0,
u.x, u.y, u.z, 0, -f.x, -f.y, -f.z, 0,
0, 0, 0, 1
]);

// Noch weitere Berechnungen? Translation
let trans = Matrix.translation(eye.mul(-1));
mat = mat.mul(trans);
return mat;

}

static frustum(left, right, bottom, top, near, far) {
// TODO [exercise 9]
const n2 = 2 * near;
const rpl = right + left;
const rml = right - left;
const tpb = top + bottom;
const tmb = top - bottom;
const fpn = far + near;
const fmn = far - near;
const n2f = n2 * far;
return new Matrix([
n2 / rml, 0, rpl / rml, 0,
0, n2 / tmb, tpb / tmb, 0,
0, 0, -fpn / fmn, -n2f / fmn,
0, 0, -1, 0
]);


}

static perspective(fovy, aspect, near, far) {

// frustum Methode verwenden. Foliensatz 10

const top = near * Math.tan((Math.PI / 180) * (fovy / 2));
const bottom = -top;
const right = top * aspect;
const left = -right;

return Matrix.frustum(left, right, bottom, top, near, far);

}

/**
* Returns the identity matrix
*/
static identity() {
return new Matrix([
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
]);
}

mul(other) {

if (other instanceof Matrix) {
// [exercise 7]
let m = Matrix.identity();
for (let row = 0; row < 4; row++) {
for (let col = 0; col < 4; col++) {
let sum = 0;
for (let i = 0; i < 4; i++) {
sum += this.getVal(row, i) * other.getVal(i, col);
}
m.setVal(row, col, sum);
}
}
return m;
} else {
let v = [0, 0, 0, 0];
for (let row = 0; row < 4; row++) {
for (let i = 0; i < 4; i++) {
v[row] += this.getVal(row, i) * other.valueOf()[i];
}
}
return new Vector(v[0], v[1], v[2], v[3]);
}

}


transpose() {
let m = Matrix.identity();
for (let row = 0; row < 4; row++) {
for (let col = 0; col < 4; col++) {
m.setVal(row, col, this.getVal(col, row));
}
}
return m;

}


invert() {
let mat = this.data;
let dst = new Float32Array(16); //ret.getValues();
let tmp = new Float32Array(12);

/* temparray for pairs */
let src = new Float32Array(16); //new float[16];

/* array of transpose source matrix */
let det;

for (let i = 0; i < 4; i++) {
src[i] = mat[i * 4];
src[i + 4] = mat[i * 4 + 1];
src[i + 8] = mat[i * 4 + 2];
src[i + 12] = mat[i * 4 + 3];
}

tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];

dst[0] = tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7];
dst[0] -= tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7];
dst[1] = tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7];
dst[1] -= tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7];
dst[2] = tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7];
dst[2] -= tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7];
dst[3] = tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6];
dst[3] -= tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6];
dst[4] = tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3];
dst[4] -= tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3];
dst[5] = tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3];
dst[5] -= tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3];
dst[6] = tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3];
dst[6] -= tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3];
dst[7] = tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2];
dst[7] -= tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2];

tmp[0] = src[2] * src[7];
tmp[1] = src[3] * src[6];
tmp[2] = src[1] * src[7];
tmp[3] = src[3] * src[5];
tmp[4] = src[1] * src[6];
tmp[5] = src[2] * src[5];
tmp[6] = src[0] * src[7];
tmp[7] = src[3] * src[4];
tmp[8] = src[0] * src[6];
tmp[9] = src[2] * src[4];
tmp[10] = src[0] * src[5];
tmp[11] = src[1] * src[4];

dst[8] = tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15];
dst[8] -= tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15];
dst[9] = tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15];
dst[9] -= tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15];
dst[10] = tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15];
dst[10] -= tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15];
dst[11] = tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14];
dst[11] -= tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14];
dst[12] = tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9];
dst[12] -= tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10];
dst[13] = tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10];
dst[13] -= tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8];
dst[14] = tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8];
dst[14] -= tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9];
dst[15] = tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9];
dst[15] -= tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8];

det = src[0] * dst[0] + src[1] * dst[1] + src[2] * dst[2] + src[3] * dst[3];

if (det == 0.0) {
throw new Error("singular matrix is not invertible");
}

/* calculate matrix inverse */
det = 1 / det;

for (let j = 0; j < 16; j++) {
dst[j] *= det;
}

let ret = Matrix.identity();
ret.data = dst;
return ret;
}
}

/**
* Class representing a vector in 4D space
*/
class Vector {

/**
* Create a vector
* @param {number} x - The x component
* @param {number} y - The y component
* @param {number} z - The z component
* @param {number} w - The w component
* @return {number} The resulting vector
*/
constructor(x, y, z, w) {
this.data = [x, y, z, w];
}

//has getter and setter

add(other) {
return new Vector(
this.x + other.x,
this.y + other.y,
this.z + other.z,
this.w + other.w
);
}

sub(other) {
return new Vector(
this.x - other.x,
this.y - other.y,
this.z - other.z,
this.w - other.w
);
}

mul(other) {
return new Vector(
this.x * other,
this.y * other,
this.z * other,
this.w
);
}

div(other) {
return new Vector(
this.x / other,
this.y / other,
this.z / other,
this.w
);
}

dot(other) {
if (other instanceof Vector) {
return this.x * other.x + this.y * other.y + this.z * other.z;
} else {
throw new Error("Dot product only works with vectors!");
}
}

cross(other) {
if (other instanceof Vector) {
return new Vector(
this.y * other.z - this.z * other.y,
this.z * other.x - this.x * other.z,
this.x * other.y - this.y * other.x,
0
);
} else {
throw new Error("Dot product only works with vectors!");
}
}

valueOf() {
return this.data;
}

normalised() {
const l = this.length;
return this.div(l);
}

equals(other) {
return (
Math.abs(this.x - other.x) <= Number.EPSILON &&
Math.abs(this.y - other.y) <= Number.EPSILON &&
Math.abs(this.z - other.z) <= Number.EPSILON &&
((!this.w && !other.w) || Math.abs(this.w - other.w) <= Number.EPSILON)
);
}

get length() {
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
}

/**
* Class representing a Node in a Scenegraph
*/
class Node {
/**
* Accepts a visitor according to the visitor pattern
* @param {Visitor} visitor - The visitor
*/
accept(visitor) { }
}

/**
* Class representing a GroupNode in the Scenegraph.
* A GroupNode holds a transformation and is able
* to have child nodes attached to it.
* @extends Node
*/
class GroupNode extends Node {
/**
* Constructor
* @param {Matrix} mat - A matrix describing the node's transformation
*/
constructor(mat) {
super();
this.matrix = mat;
// TODO [exercise 8]
this.children = [];
}

/**
* Accepts a visitor according to the visitor pattern
* @param {Visitor} visitor - The visitor
*/
accept(visitor) {
// TODO [exercise 8]
visitor.visitGroupNode(this);
}

/**
* Adds a child node
* @param {Node} childNode - The child node to add
*/
add(childNode) {
// TODO [exercise 8]
this.children.push(childNode);
}
}

/**
* Class representing a Textured Axis Aligned Box in the Scenegraph
* @extends Node
*/
class TextureBoxNode extends Node {

constructor(minPoint, maxPoint, texture) {
super();
this.minPoint = minPoint;
this.maxPoint = maxPoint;
this.texture = texture;
}

accept(visitor) {
// TODO [exercise 8]
visitor.visitTextureBoxNode(this);
}
}
//Texture Fragment Shader

precision mediump float;

uniform sampler2D sampler;
varying vec2 v_texCoord;

void main( void ) {
//gl_FragColor = vec4( 0.0, 0.0, 0.5, 1.0 );

// Read fragment color from texture
// TODO [exercise 9]
gl_FragColor = texture2D(sampler, vec2(v_texCoord.s, v_texCoord.t));
}

//Texture Vertex Shader

attribute vec3 a_position;
attribute vec2 a_texCoord;
varying vec2 v_texCoord;

uniform mat4 M;
uniform mat4 V;
uniform mat4 P;

void main() {
gl_Position = P * V * M * vec4( a_position, 1.0 );
v_texCoord = a_texCoord;
}

// Phong Vertex Shader

attribute vec3 a_position;
attribute vec3 a_normal;

// Pass color as attribute and forward it
// to the fragment shader
attribute vec4 a_color;

uniform mat4 M;
uniform mat4 V;
uniform mat4 P;
uniform mat4 N; // normal matrix

varying vec3 v_normal;

// Pass the vertex position in view space
// to the fragment shader
// TODO [exercise 9]

varying vec4 v_position;
varying vec4 v_color;

void main() {
gl_Position = P * V * M * vec4( a_position, 1.0 );

// Pass the color and transformed vertex position through
v_position = gl_Position;
v_color = a_color;

v_normal = (N * vec4(a_normal, 0)).xyz;
}

//Phong Fragment Shader
//precision mediump float;
// TODO [exercise 5]
//void main( void ) {
//gl_FragColor = vec4( 0.0, 0.0, 0.5, 1.0 );
// TODO [exercise 5]
//}

// Wird mindestens einmal pro Pixel ausgefuehrt

precision mediump float;
// TODO [exercise 5]
varying vec4 v_color;
varying vec4 v_position;
varying vec3 v_normal;

const vec3 lightPos = vec3(0.2,-1.0,-1.0);
const float shininess = 16.0;

const float k_a = 1.0;
const float k_d = 0.6;
const float k_s = 0.3;

// Farbe von Vertex shader durchreichen und Interpolieren
void main( void ) {
// Rot, Gruen, Blau, Alpha
//gl_FragColor = vec4( 0.0, 0.0, 0.5, 1.0 );
// TODO [exercise 5]
vec3 vertPos = vec3(v_position) / v_position.w;
vec3 N = normalize(v_normal);
vec3 L = normalize(lightPos - vertPos);

vec4 L_j = vec4(1,1,1,1);

vec4 diffuse = L_j * max(dot(N, L), 0.0);

vec3 R = reflect(-L, N);
vec3 V = normalize(-vertPos);
float specAngle = max(dot(R, V), 0.0);
vec4 specular = L_j * pow(specAngle, shininess);

vec4 color = vec4(k_a * v_color + k_d * diffuse + k_s * specular);
gl_FragColor = color;
}
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>ICG-11 Animation</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous">
</head>

<body>

<div class="container text-center">
<h1>ICG Animation</h1>
<hr>
<p>Implement a Rasteriser with WebGL using a Scenegraph.</p>
<canvas id="rasteriser" width="500" height="500"></canvas>
<script src="vector.js"></script>
<script src="raster-texture-box.js"></script>
<script src="matrix.js"></script>
<script src="nodes.js"></script>
<script src="rastervisitor.js"></script>
<script src="shader.js"></script>
<script src="animation-nodes.js"></script>
<script>
const canvas = document.getElementById("rasteriser");
const gl = canvas.getContext("webgl");

// construct scene graph
const sg = new GroupNode(Matrix.scaling(new Vector(0.2, 0.2, 0.2)));
const gn1 = new GroupNode(Matrix.translation(new Vector(1, 1, 0)));
sg.add(gn1);

let gn2 = new GroupNode(Matrix.translation(new Vector(-.7, -0.4, .1)));
sg.add(gn2);
const cube = new TextureBoxNode(
new Vector(-1, -1, -1, 1),
new Vector(1, 1, 1, 1),
'diffuse.png'
);
gn2.add(cube);

// setup for rendering
const setupVisitor = new RasterSetupVisitor(gl);
setupVisitor.setup(sg);

const visitor = new RasterVisitor(gl);

let camera = {
eye: new Vector(-.5, .5, -1, 1),
center: new Vector(0, 0, 0, 1),
up: new Vector(0, 1, 0, 0),
fovy: 60,
aspect: canvas.width / canvas.height,
near: 0.1,
far: 100
};

const phongShader = new Shader(gl,
"phong-vertex-perspective-shader.glsl",
"phong-fragment-shader.glsl"
);
visitor.shader = phongShader;
const textureShader = new Shader(gl,
"texture-vertex-perspective-shader.glsl",
"texture-fragment-shader.glsl"
);
visitor.textureshader = textureShader;

let animationNodes = [
new RotationNode(gn2, new Vector(0, 0, 1))
];

function simulate(deltaT) {
for (animationNode of animationNodes) {
animationNode.simulate(deltaT);
}
}

let lastTimestamp = performance.now();

function animate(timestamp) {
simulate(timestamp - lastTimestamp);
visitor.render(sg, camera);
lastTimestamp = timestamp;
window.requestAnimationFrame(animate);
}
Promise.all(
[textureShader.load(), phongShader.load()]
).then(x =>
window.requestAnimationFrame(animate)
);

</script>
</div>
</body>

</html>

嘿,我一直在尝试添加第二个纹理

到我的立方体并做一些凹凸贴图。但是我是程序初学者,所以对我来说有点难。我对矩阵和向量的所有数学运算都在同一个命名的 js.files 中。我还需要各种着色器、纹理和 phong 着色器。现在每个人都说我必须计算我的法线,但我该怎么做呢?在哪里?期待您的帮助!

最佳答案

使用问题中的法线贴图,Bump mapping可以执行。在凹凸映射中,从法线贴图中读取片段的法线向量并用于光照计算。
通常,入射光向量被转换到纹理空间。这是对象(片段)上法线贴图的“方向”。为了建立描述 map 方向的 3x3 方向矩阵,必须知道切向量和双切向量以及法向量。如果没有切向量和双切向量,可以在片段着色器中通过顶点位置和纹理坐标的偏导来近似向量。

所以至少需要纹理坐标和法向量属性。在片段着色器中,计算分别在世界空间和纹理空间中完成。顶点着色器很简单:

precision highp float;

attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texCoord;

varying vec3 w_pos;
varying vec3 w_nv;
varying vec2 o_uv;

uniform mat4 P;
uniform mat4 V;
uniform mat4 M;

void main()
{
o_uv = a_texCoord;
w_nv = normalize(mat3(M) * a_normal);
vec4 worldPos = M * vec4(a_position, 1.0);
w_pos = worldPos.xyz;
gl_Position = P * V * worldPos;
}

在片段着色器中,从法线贴图中读取法线向量:

vec3 mapN = normalize(texture2D(u_normal_map, o_uv.st).xyz * 2.0 - 1.0);

光向量变换到纹理空间:

vec3 L = tbn_inv * normalize(u_light_pos - w_pos);

使用这个向量可以进行光照计算:

float kd   = max(0.0, dot(mapN, L));

要计算将世界空间转换为纹理空间的矩阵,需要偏导数函数 (dFdx, dFdy)。这导致必须启用“OES_standard_derivatives”(或“webgl2”上下文):

gl = canvas.getContext( "experimental-webgl" );
var standard_derivatives = gl.getExtension("OES_standard_derivatives");

另一个答案中解释了计算切线向量和副法线向量的算法 - How to calculate Tangent and Binormal? .

最终片段着色器:

#extension GL_OES_standard_derivatives : enable
precision mediump float;

varying vec3 w_pos;
varying vec3 w_nv;
varying vec2 o_uv;

uniform vec3 u_light_pos;
uniform sampler2D u_diffuse;
uniform sampler2D u_normal_map;

void main()
{
vec3 N = normalize(w_nv);
vec3 dp1 = dFdx( w_pos );
vec3 dp2 = dFdy( w_pos );
vec2 duv1 = dFdx( o_uv );
vec2 duv2 = dFdy( o_uv );
vec3 dp2perp = cross(dp2, N);
vec3 dp1perp = cross(N, dp1);
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
float invmax = inversesqrt(max(dot(T, T), dot(B, B)));
mat3 tm = mat3(T * invmax, B * invmax, N);
mat3 tbn_inv = mat3(vec3(tm[0].x, tm[1].x, tm[2].x), vec3(tm[0].y, tm[1].y, tm[2].y), vec3(tm[0].z, tm[1].z, tm[2].z));

vec3 L = tbn_inv * normalize(u_light_pos - w_pos);
vec3 mapN = normalize(texture2D(u_normal_map, o_uv.st).xyz * 2.0 - 1.0);
float kd = max(0.0, dot(mapN, L));

vec3 color = texture2D(u_diffuse, o_uv.st).rgb;
vec3 light_col = (0.0 + kd) * color.rgb;
gl_FragColor = vec4(clamp(light_col, 0.0, 1.0), 1.0);
}

并且会产生像这样的凹凸贴图:

如果知道切向量,tbn_inv 矩阵的计算可以大大简化:

mat3 tm = mat3(normalize(w_tv), normalize(cross(w_nv, w_tv)), normalize(w_nv));
mat3 tbn_inv = mat3(vec3(tm[0].x, tm[1].x, tm[2].x), vec3(tm[0].y, tm[1].y, tm[2].y), vec3(tm[0].z, tm[1].z, tm[2].z));

如果你想要Parallax mapping喜欢这个Example那么还需要置换贴图。

这张 map 上的白色区域被“插入”了对象。该算法在 LearnOpengl - Parallax Mapping 中有详细描述。 .
这个想法是每个片段都与置换贴图的高度相关联。这可以想象成一个立在碎片上的长方形柱子。视线一直被跟踪,直到一个移位的片段被击中。

对于高性能算法,样本是从置换纹理中提取的。当片段被识别时,则读取法线贴图和漫反射纹理的对应片段。这给出了几何体的 3 维外观。请注意,此算法无法处理剪影。

具有陡峭视差映射的最终片段着色器:

#extension GL_OES_standard_derivatives : enable
precision mediump float;

varying vec3 w_pos;
varying vec3 w_nv;
varying vec2 o_uv;

uniform float u_height_scale;
uniform vec3 u_light_pos;
uniform vec3 u_view_pos;
uniform sampler2D u_diffuse;
uniform sampler2D u_normal_map;
uniform sampler2D u_displacement_map;

vec2 ParallaxMapping (vec2 texCoord, vec3 viewDir)
{
float numLayers = 32.0 - 31.0 * abs(dot(vec3(0.0, 0.0, 1.0), viewDir));
float layerDepth = 1.0 / numLayers;

vec2 P = viewDir.xy / viewDir.z * u_height_scale;
vec2 deltaTexCoords = P / numLayers;
vec2 currentTexCoords = texCoord;

float currentLayerDepth = 0.0;
float currentDepthMapValue = texture2D(u_displacement_map, currentTexCoords).r;
for (int i=0; i<32; ++ i)
{
if (currentLayerDepth >= currentDepthMapValue)
break;
currentTexCoords -= deltaTexCoords;
currentDepthMapValue = texture2D(u_displacement_map, currentTexCoords).r;
currentLayerDepth += layerDepth;
}

vec2 prevTexCoords = currentTexCoords + deltaTexCoords;
float afterDepth = currentDepthMapValue - currentLayerDepth;
float beforeDepth = texture2D(u_displacement_map, prevTexCoords).r - currentLayerDepth + layerDepth;

float weight = afterDepth / (afterDepth - beforeDepth);
return prevTexCoords * weight + currentTexCoords * (1.0 - weight);
}

void main()
{
vec3 N = normalize(w_nv);
vec3 dp1 = dFdx( w_pos );
vec3 dp2 = dFdy( w_pos );
vec2 duv1 = dFdx( o_uv );
vec2 duv2 = dFdy( o_uv );
vec3 dp2perp = cross(dp2, N);
vec3 dp1perp = cross(N, dp1);
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
float invmax = inversesqrt(max(dot(T, T), dot(B, B)));
mat3 tm = mat3(T * invmax, B * invmax, N);
mat3 tbn_inv = mat3(vec3(tm[0].x, tm[1].x, tm[2].x), vec3(tm[0].y, tm[1].y, tm[2].y), vec3(tm[0].z, tm[1].z, tm[2].z));

vec3 view_dir = tbn_inv * normalize(w_pos - u_view_pos);
vec2 uv = ParallaxMapping(o_uv, view_dir);
if (uv.x > 1.0 || uv.y > 1.0 || uv.x < 0.0 || uv.y < 0.0)
discard;

vec3 L = tbn_inv * normalize(u_light_pos - w_pos);
vec3 mapN = normalize(texture2D(u_normal_map, uv.st).xyz * 2.0 - 1.0);
float kd = max(0.0, dot(mapN, L));

vec3 color = texture2D(u_diffuse, uv.st).rgb;
vec3 light_col = (0.1 + kd) * color.rgb;
gl_FragColor = vec4(clamp(light_col, 0.0, 1.0), 1.0);
}

结果更令人印象深刻:

(function loadscene() {

var gl, progDraw, vp_size;
var bufCube = {};
var diffuse_tex = 1;
var height_tex = 2;
var normal_tex = 3;

function render(deltaMS){

var height_scale = 0.3 * document.getElementById("height").value / 100.0;

// setup view projection and model
vp_size = [canvas.width, canvas.height];
camera.Update( vp_size );
var prjMat = camera.Perspective();
var viewMat = camera.LookAt();
var modelMat = camera.AutoModelMatrix();

gl.viewport( 0, 0, vp_size[0], vp_size[1] );
gl.enable( gl.DEPTH_TEST );
gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

gl.frontFace(gl.CCW)
gl.cullFace(gl.BACK)
gl.enable(gl.CULL_FACE)

// set up draw shader
ShProg.Use( progDraw );
ShProg.SetF3( progDraw, "u_view_pos", camera.pos )
ShProg.SetF3( progDraw, "u_light_pos", [0.0, 5.0, 5.0] )
ShProg.SetF1( progDraw, "u_height_scale", height_scale );
ShProg.SetI1( progDraw, "u_diffuse", diffuse_tex );
ShProg.SetI1( progDraw, "u_displacement_map", height_tex );
ShProg.SetI1( progDraw, "u_normal_map", normal_tex );
ShProg.SetM44( progDraw, "P", prjMat );
ShProg.SetM44( progDraw, "V", viewMat );
ShProg.SetM44( progDraw, "M", modelMat );

// draw scene
VertexBuffer.Draw( bufCube );

requestAnimationFrame(render);
}

function initScene() {

canvas = document.getElementById( "canvas");
gl = canvas.getContext( "experimental-webgl" );
var standard_derivatives = gl.getExtension("OES_standard_derivatives"); // dFdx, dFdy
if (!standard_derivatives)
alert('no standard derivatives support (no dFdx, dFdy)');
//gl = canvas.getContext( "webgl2" );
if ( !gl )
return null;

progDraw = ShProg.Create(
[ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
{ source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
] );
if ( !progDraw.progObj )
return null;
progDraw.inPos = ShProg.AttrI( progDraw, "a_position" );
progDraw.inNV = ShProg.AttrI( progDraw, "a_normal" );
progDraw.inUV = ShProg.AttrI( progDraw, "a_texCoord" );

// create cube
let Pos = [ -1,-1,1, 1,-1,1, 1,1,1, -1,1,1, -1,-1,-1, 1,-1,-1, 1,1,-1, -1,1,-1 ];
let Col = [ 1,0,0, 1,0.5,0, 1,0,1, 1,1,0, 0,1,0, 0, 0, 1 ];
let NV = [ 0,0,1, 1,0,0, 0,0,-1, -1,0,0, 0,1,0, 0,-1,0 ];
let TV = [ 1,0,0, 0,0,-1, -1,0,0, 0,0,1, 1,0,0, -1,0,0 ];
var cubeHlpInx = [ 0,1,2,3, 1,5,6,2, 5,4,7,6, 4,0,3,7, 3,2,6,7, 1,0,4,5 ];
var cubePosData = [];
for ( var i = 0; i < cubeHlpInx.length; ++ i ) cubePosData.push(Pos[cubeHlpInx[i]*3], Pos[cubeHlpInx[i]*3+1], Pos[cubeHlpInx[i]*3+2] );
var cubeNVData = [];
for ( var i1 = 0; i1 < 6; ++ i1 ) {
for ( i2 = 0; i2 < 4; ++ i2 ) cubeNVData.push(NV[i1*3], NV[i1*3+1], NV[i1*3+2]);
}
var cubeTVData = [];
for ( var i1 = 0; i1 < 6; ++ i1 ) {
for ( i2 = 0; i2 < 4; ++ i2 ) cubeTVData.push(TV[i1*3], TV[i1*3+1], TV[i1*3+2]);
}
var cubeColData = [];
for ( var is = 0; is < 6; ++ is ) {
for ( var ip = 0; ip < 4; ++ ip ) cubeColData.push(Col[is*3], Col[is*3+1], Col[is*3+2]);
}
var cubeTexData = []
for ( var i = 0; i < 6; ++ i ) cubeTexData.push( 0, 0, 1, 0, 1, 1, 0, 1 );
var cubeInxData = [];
for ( var i = 0; i < cubeHlpInx.length; i += 4 ) cubeInxData.push( i, i+1, i+2, i, i+2, i+3 );
bufCube = VertexBuffer.Create(
[ { data : cubePosData, attrSize : 3, attrLoc : progDraw.inPos },
{ data : cubeNVData, attrSize : 3, attrLoc : progDraw.inNV },
//{ data : cubeTVData, attrSize : 3, attrLoc : progDraw.inTV },
{ data : cubeTexData, attrSize : 2, attrLoc : progDraw.inUV },
//{ data : cubeColData, attrSize : 3, attrLoc : progDraw.inCol },
],
cubeInxData, gl.TRIANGLES );

Texture.LoadTexture2D( diffuse_tex, "https://raw.githubusercontent.com/Rabbid76/graphics-snippets/master/resource/texture/woodtiles.jpg" );
Texture.LoadTexture2D( height_tex, "https://raw.githubusercontent.com/Rabbid76/graphics-snippets/master/resource/texture/toy_box_disp.png" );
Texture.LoadTexture2D( normal_tex, "https://raw.githubusercontent.com/Rabbid76/graphics-snippets/master/resource/texture/toy_box_normal.png" );

camera = new Camera( [0, 3, 0], [0, 0, 0], [0, 0, 1], 90, vp_size, 0.5, 100 );

window.onresize = resize;
resize();
requestAnimationFrame(render);
}

function resize() {
//vp_size = [gl.drawingBufferWidth, gl.drawingBufferHeight];
vp_size = [window.innerWidth, window.innerHeight];
//vp_size = [256, 256];
canvas.width = vp_size[0];
canvas.height = vp_size[1];
}

function Fract( val ) {
return val - Math.trunc( val );
}
function CalcAng( deltaTime, interval ) {
return Fract( deltaTime / (1000*interval) ) * 2.0 * Math.PI;
}
function CalcMove( deltaTime, interval, range ) {
var pos = self.Fract( deltaTime / (1000*interval) ) * 2.0
var pos = pos < 1.0 ? pos : (2.0-pos)
return range[0] + (range[1] - range[0]) * pos;
}

function IdentM44() {
return [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ];
};

function RotateAxis(matA, angRad, axis) {
var aMap = [ [1, 2], [2, 0], [0, 1] ];
var a0 = aMap[axis][0], a1 = aMap[axis][1];
var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
var matB = matA.slice(0);
for ( var i = 0; i < 3; ++ i ) {
matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
}
return matB;
}

function Rotate(matA, angRad, axis) {
var s = Math.sin(angRad), c = Math.cos(angRad);
var x = axis[0], y = axis[1], z = axis[2];
matB = [
x*x*(1-c)+c, x*y*(1-c)-z*s, x*z*(1-c)+y*s, 0,
y*x*(1-c)+z*s, y*y*(1-c)+c, y*z*(1-c)-x*s, 0,
z*x*(1-c)-y*s, z*y*(1-c)+x*s, z*z*(1-c)+c, 0,
0, 0, 0, 1 ];
return Multiply(matA, matB);
}

function Multiply(matA, matB) {
matC = IdentM44();
for (var i0=0; i0<4; ++i0 )
for (var i1=0; i1<4; ++i1 )
matC[i0*4+i1] = matB[i0*4+0] * matA[0*4+i1] + matB[i0*4+1] * matA[1*4+i1] + matB[i0*4+2] * matA[2*4+i1] + matB[i0*4+3] * matA[3*4+i1]
return matC;
}

function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
function Normalize( v ) {
var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
return [ v[0] / len, v[1] / len, v[2] / len ];
}

Camera = function( pos, target, up, fov_y, vp, near, far ) {
this.Time = function() { return Date.now(); }
this.pos = pos;
this.target = target;
this.up = up;
this.fov_y = fov_y;
this.vp = vp;
this.near = near;
this.far = far;
this.orbit_mat = this.current_orbit_mat = this.model_mat = this.current_model_mat = IdentM44();
this.mouse_drag = this.auto_spin = false;
this.auto_rotate = true;
this.mouse_start = [0, 0];
this.mouse_drag_axis = [0, 0, 0];
this.mouse_drag_angle = 0;
this.mouse_drag_time = 0;
this.drag_start_T = this.rotate_start_T = this.Time();
this.Ortho = function() {
var fn = this.far + this.near;
var f_n = this.far - this.near;
var w = this.vp[0];
var h = this.vp[1];
return [
2/w, 0, 0, 0,
0, 2/h, 0, 0,
0, 0, -2/f_n, 0,
0, 0, -fn/f_n, 1 ];
};
this.Perspective = function() {
var n = this.near;
var f = this.far;
var fn = f + n;
var f_n = f - n;
var r = this.vp[0] / this.vp[1];
var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
return [
t/r, 0, 0, 0,
0, t, 0, 0,
0, 0, -fn/f_n, -1,
0, 0, -2*f*n/f_n, 0 ];
};
this.LookAt = function() {
var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
var mx = Normalize( Cross( this.up, mz ) );
var my = Normalize( Cross( mz, mx ) );
var tx = Dot( mx, this.pos );
var ty = Dot( my, this.pos );
var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos );
return [mx[0], my[0], mz[0], 0, mx[1], my[1], mz[1], 0, mx[2], my[2], mz[2], 0, tx, ty, tz, 1];
};
this.AutoModelMatrix = function() {
return this.auto_rotate ? Multiply(this.current_model_mat, this.model_mat) : this.model_mat;
};
this.Update = function(vp_size) {
if (vp_size)
this.vp = vp_size;
var current_T = this.Time();
this.current_model_mat = IdentM44()
var auto_angle_x = Fract( (current_T - this.rotate_start_T) / 13000.0 ) * 2.0 * Math.PI;
var auto_angle_y = Fract( (current_T - this.rotate_start_T) / 17000.0 ) * 2.0 * Math.PI;
this.current_model_mat = RotateAxis( this.current_model_mat, auto_angle_x, 0 );
this.current_model_mat = RotateAxis( this.current_model_mat, auto_angle_y, 1 );
};
}

var Texture = {};
Texture.HandleLoadedTexture2D = function( texture, flipY ) {
gl.activeTexture( gl.TEXTURE0 + texture.unit );
gl.bindTexture( gl.TEXTURE_2D, texture.obj );
gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, flipY != undefined && flipY == true );
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, texture.image );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT );
return texture;
}
Texture.LoadTexture2D = function( unit, name ) {
var texture = {};
texture.obj = gl.createTexture();
texture.unit = unit;
texture.image = new Image();
texture.image.setAttribute('crossorigin', 'anonymous');
texture.image.onload = function () {
Texture.HandleLoadedTexture2D( texture, false )
}
texture.image.src = name;
return texture;
}

var ShProg = {
Create: function (shaderList) {
var shaderObjs = [];
for (var i_sh = 0; i_sh < shaderList.length; ++i_sh) {
var shderObj = this.Compile(shaderList[i_sh].source, shaderList[i_sh].stage);
if (shderObj) shaderObjs.push(shderObj);
}
var prog = {}
prog.progObj = this.Link(shaderObjs)
if (prog.progObj) {
prog.attrInx = {};
var noOfAttributes = gl.getProgramParameter(prog.progObj, gl.ACTIVE_ATTRIBUTES);
for (var i_n = 0; i_n < noOfAttributes; ++i_n) {
var name = gl.getActiveAttrib(prog.progObj, i_n).name;
prog.attrInx[name] = gl.getAttribLocation(prog.progObj, name);
}
prog.uniLoc = {};
var noOfUniforms = gl.getProgramParameter(prog.progObj, gl.ACTIVE_UNIFORMS);
for (var i_n = 0; i_n < noOfUniforms; ++i_n) {
var name = gl.getActiveUniform(prog.progObj, i_n).name;
prog.uniLoc[name] = gl.getUniformLocation(prog.progObj, name);
}
}
return prog;
},
AttrI: function (prog, name) { return prog.attrInx[name]; },
UniformL: function (prog, name) { return prog.uniLoc[name]; },
Use: function (prog) { gl.useProgram(prog.progObj); },
SetI1: function (prog, name, val) { if (prog.uniLoc[name]) gl.uniform1i(prog.uniLoc[name], val); },
SetF1: function (prog, name, val) { if (prog.uniLoc[name]) gl.uniform1f(prog.uniLoc[name], val); },
SetF2: function (prog, name, arr) { if (prog.uniLoc[name]) gl.uniform2fv(prog.uniLoc[name], arr); },
SetF3: function (prog, name, arr) { if (prog.uniLoc[name]) gl.uniform3fv(prog.uniLoc[name], arr); },
SetF4: function (prog, name, arr) { if (prog.uniLoc[name]) gl.uniform4fv(prog.uniLoc[name], arr); },
SetM33: function (prog, name, mat) { if (prog.uniLoc[name]) gl.uniformMatrix3fv(prog.uniLoc[name], false, mat); },
SetM44: function (prog, name, mat) { if (prog.uniLoc[name]) gl.uniformMatrix4fv(prog.uniLoc[name], false, mat); },
Compile: function (source, shaderStage) {
var shaderScript = document.getElementById(source);
if (shaderScript)
source = shaderScript.text;
var shaderObj = gl.createShader(shaderStage);
gl.shaderSource(shaderObj, source);
gl.compileShader(shaderObj);
var status = gl.getShaderParameter(shaderObj, gl.COMPILE_STATUS);
if (!status) alert(gl.getShaderInfoLog(shaderObj));
return status ? shaderObj : null;
},
Link: function (shaderObjs) {
var prog = gl.createProgram();
for (var i_sh = 0; i_sh < shaderObjs.length; ++i_sh)
gl.attachShader(prog, shaderObjs[i_sh]);
gl.linkProgram(prog);
status = gl.getProgramParameter(prog, gl.LINK_STATUS);
if ( !status ) alert(gl.getProgramInfoLog(prog));
return status ? prog : null;
} };

var VertexBuffer = {
Create: function(attribs, indices, type) {
var buffer = { buf: [], attr: [], inx: gl.createBuffer(), inxLen: indices.length, primitive_type: type ? type : gl.TRIANGLES };
for (var i=0; i<attribs.length; ++i) {
buffer.buf.push(gl.createBuffer());
buffer.attr.push({ size : attribs[i].attrSize, loc : attribs[i].attrLoc });
gl.bindBuffer(gl.ARRAY_BUFFER, buffer.buf[i]);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array( attribs[i].data ), gl.STATIC_DRAW);
}
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffer.inx);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( indices ), gl.STATIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, null);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
return buffer;
},
Draw: function(bufObj) {
for (var i=0; i<bufObj.buf.length; ++i) {
gl.bindBuffer(gl.ARRAY_BUFFER, bufObj.buf[i]);
gl.vertexAttribPointer(bufObj.attr[i].loc, bufObj.attr[i].size, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray( bufObj.attr[i].loc);
}
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufObj.inx);
gl.drawElements(bufObj.primitive_type, bufObj.inxLen, gl.UNSIGNED_SHORT, 0);
for (var i=0; i<bufObj.buf.length; ++i)
gl.disableVertexAttribArray(bufObj.attr[i].loc);
gl.bindBuffer( gl.ARRAY_BUFFER, null );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
} };

initScene();

})();
html,body { margin: 0; overflow: hidden; }
#gui { position : absolute; top : 0; left : 0; }
<script id="draw-shader-vs" type="x-shader/x-vertex">
precision highp float;

attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texCoord;

varying vec3 w_pos;
varying vec3 w_nv;
varying vec2 o_uv;

uniform mat4 P;
uniform mat4 V;
uniform mat4 M;

void main()
{
o_uv = a_texCoord;
w_nv = normalize(mat3(M) * a_normal);
vec4 worldPos = M * vec4(a_position, 1.0);
w_pos = worldPos.xyz;
gl_Position = P * V * worldPos;
}
</script>

<script id="draw-shader-fs" type="x-shader/x-fragment">
#extension GL_OES_standard_derivatives : enable
precision mediump float;

varying vec3 w_pos;
varying vec3 w_nv;
varying vec2 o_uv;

uniform float u_height_scale;
uniform vec3 u_light_pos;
uniform vec3 u_view_pos;
uniform sampler2D u_diffuse;
uniform sampler2D u_normal_map;
uniform sampler2D u_displacement_map;

vec2 ParallaxMapping (vec2 texCoord, vec3 viewDir)
{
float numLayers = 32.0 - 31.0 * abs(dot(vec3(0.0, 0.0, 1.0), viewDir));
float layerDepth = 1.0 / numLayers;

vec2 P = viewDir.xy / viewDir.z * u_height_scale;
vec2 deltaTexCoords = P / numLayers;
vec2 currentTexCoords = texCoord;

float currentLayerDepth = 0.0;
float currentDepthMapValue = texture2D(u_displacement_map, currentTexCoords).r;
for (int i=0; i<32; ++ i)
{
if (currentLayerDepth >= currentDepthMapValue)
break;
currentTexCoords -= deltaTexCoords;
currentDepthMapValue = texture2D(u_displacement_map, currentTexCoords).r;
currentLayerDepth += layerDepth;
}

vec2 prevTexCoords = currentTexCoords + deltaTexCoords;
float afterDepth = currentDepthMapValue - currentLayerDepth;
float beforeDepth = texture2D(u_displacement_map, prevTexCoords).r - currentLayerDepth + layerDepth;

float weight = afterDepth / (afterDepth - beforeDepth);
return prevTexCoords * weight + currentTexCoords * (1.0 - weight);
}

void main()
{
vec3 N = normalize(w_nv);
vec3 dp1 = dFdx( w_pos );
vec3 dp2 = dFdy( w_pos );
vec2 duv1 = dFdx( o_uv );
vec2 duv2 = dFdy( o_uv );
vec3 dp2perp = cross(dp2, N);
vec3 dp1perp = cross(N, dp1);
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
float invmax = inversesqrt(max(dot(T, T), dot(B, B)));
mat3 tm = mat3(T * invmax, B * invmax, N);
mat3 tbn_inv = mat3(vec3(tm[0].x, tm[1].x, tm[2].x), vec3(tm[0].y, tm[1].y, tm[2].y), vec3(tm[0].z, tm[1].z, tm[2].z));

vec3 view_dir = tbn_inv * normalize(w_pos - u_view_pos);
vec2 uv = ParallaxMapping(o_uv, view_dir);
if (uv.x > 1.0 || uv.y > 1.0 || uv.x < 0.0 || uv.y < 0.0)
discard;

vec3 L = tbn_inv * normalize(u_light_pos - w_pos);
vec3 mapN = normalize(texture2D(u_normal_map, uv.st).xyz * 2.0 - 1.0);
float kd = max(0.0, dot(mapN, L));

vec3 color = texture2D(u_diffuse, uv.st).rgb;
vec3 light_col = (0.1 + kd) * color.rgb;
gl_FragColor = vec4(clamp(light_col, 0.0, 1.0), 1.0);
}
</script>

<body>

<div>
<form id="gui" name="inputs">
<table>
<tr>
<td> <font color=#CCF>height scale</font> </td>
<td> <input type="range" id="height" min="0" max="100" value="50"/></td>
</tr>
</table>
</form>
</div>


<canvas id="canvas" style="border: none;" width="100%" height="100%"></canvas>

关于javascript - 使用 javascript 和 glsl 进行凹凸贴图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51988629/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com