- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在外部 Unix 上使用 Tesla 卡在 CUDA 上实现 k-means 算法。我读取输入文件并将所有数据点的坐标存储在 dataX 和 dataY 数组中。下一步是选择每个 centreInterval 点并将其存储在 GPU 内存中分配的另一个数组中。但是,如果我所能得到的只是“段错误”并且由于明显的原因无法从内核打印任何类型的输出,我不知道如何检查问题是什么。
编辑2:我将此示例简化为最短的解决方案。我在处理过程中找到了解决方案,但决定提供该问题中尚未解决的版本,以更清楚地说明导致问题的原因。
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <math.h>
#include <time.h>
#include <unistd.h>
#define BLOCK_SIZE 16
// My kernel - Selects some centres at the beginning of algorithm and stores it at appropriate place
__global__ void kMeansSelectInitialCentres(float* d_dataX, float* d_dataY, float* d_centresX, float* d_centresY, int centreInterval) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int idx = i * centreInterval;
d_centresX[i] = d_dataX[idx];
d_centresY[i] = d_dataY[idx];
}
// Simplified example
int main(int argn, char ** argc) {
// My data - let's say it is 32 floats in each
int dataSize = 32;
float* dataX = new float[dataSize];
float* dataY = new float[dataSize];
// Fill arrays with numbers
for (int i = 0; i < dataSize; i++) {
dataX[i] = i;
dataY[i] = i;
}
// Interval - we select first number, then 1 + N * centreInterval
int centreInterval = 2;
// There I will store my results in program
int centreSize = dataSize / centreInterval;
float* centresX = new float[centreSize];
float* centresY = new float[centreSize];
// Pointers to the arrays stored in GPU memory
float* d_dataX;
float* d_dataY;
float* d_centresX;
float* d_centresY;
// Allocate memory for those arrays
// Calculate how much space in memory do we need for this
size_t d_centreSize = sizeof(float) * centreSize;
size_t d_dataSize = sizeof(float) * dataSize;
// Memory for raw data
cudaMalloc((void**)&d_dataX, d_dataSize);
cudaMalloc((void**)&d_dataY, d_dataSize);
// Copy raw data to the device memory so we can operate on it freely
cudaMemcpy(d_dataY, dataY, d_dataSize, cudaMemcpyHostToDevice);
cudaMemcpy(d_dataX, dataX, d_dataSize, cudaMemcpyHostToDevice);
// Memory for centre results
cudaMalloc((void**)&d_centresX, d_dataSize);
cudaMalloc((void**)&d_centresY, d_dataSize);
// Call kernel
dim3 dimBlock(BLOCK_SIZE);
dim3 dimGridK((centreSize + dimBlock.x) / dimBlock.x);
kMeansSelectInitialCentres <<<dimGridK, dimBlock>>> (d_dataX, d_dataY, d_centresX, d_centresY, centreInterval);
// Check results - we get every n-th point
float* check_x = new float[centreSize];
float* check_y = new float[centreSize];
cudaMemcpy(check_x, d_centresX, d_dataSize, cudaMemcpyDeviceToHost);
cudaMemcpy(check_y, d_centresY, d_dataSize, cudaMemcpyDeviceToHost);
printf("X: ");
for (int i = 0; i < centreSize; i++)
printf("%.2f ", check_x[i]);
printf("\nY: ");
for (int i = 0; i < centreSize; i++)
printf("%.2f ", check_y[i]);
printf("\n");
}
主要问题:这个内核/数据 check out 有什么问题?
附带问题:在这种情况下有没有公平的方法来调试程序内核?
最佳答案
所以,这是我在简化案例后提出的解决方案。内存使用存在问题 - 我尝试存储/读取的数据量与分配时声称使用的数据量不同。我希望它对将来的任何人都有帮助:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <math.h>
#include <time.h>
#include <unistd.h>
#define BLOCK_SIZE 16
// My kernel - Selects some centres at the beginning of algorithm and stores it at appropriate place
__global__ void kMeansSelectInitialCentres(float* d_dataX, float* d_dataY, float* d_centresX, float* d_centresY, int centreInterval) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int idx = i * centreInterval;
d_centresX[i] = d_dataX[idx];
d_centresY[i] = d_dataY[idx];
}
// Simplified example
int main(int argn, char ** argc) {
// My data - let's say it is 32 floats in each
int dataSize = 32;
float* dataX = new float[dataSize];
float* dataY = new float[dataSize];
// Fill arrays with numbers
for (int i = 0; i < dataSize; i++) {
dataX[i] = i;
dataY[i] = i;
}
// Interval - we select first number, then 1 + N * centreInterval
int centreInterval = 2;
// There I will store my results in program
int centreSize = dataSize / centreInterval;
float* centresX = new float[centreSize];
float* centresY = new float[centreSize];
// Pointers to the arrays stored in GPU memory
float* d_dataX;
float* d_dataY;
float* d_centresX;
float* d_centresY;
// Allocate memory for those arrays
// Calculate how much space in memory do we need for this
size_t d_centreSize = sizeof(float) * centreSize;
size_t d_dataSize = sizeof(float) * dataSize;
// Memory for raw data
cudaMalloc((void**)&d_dataX, d_dataSize);
cudaMalloc((void**)&d_dataY, d_dataSize);
// Copy raw data to the device memory so we can operate on it freely
cudaMemcpy(d_dataY, dataY, d_dataSize, cudaMemcpyHostToDevice);
cudaMemcpy(d_dataX, dataX, d_dataSize, cudaMemcpyHostToDevice);
// Memory for centre results
cudaMalloc((void**)&d_centresX, d_centreSize);
cudaMalloc((void**)&d_centresY, d_centreSize);
// Call kernel
dim3 dimBlock(BLOCK_SIZE);
dim3 dimGridK((centreSize + dimBlock.x) / dimBlock.x);
kMeansSelectInitialCentres <<<dimGridK, dimBlock>>> (d_dataX, d_dataY, d_centresX, d_centresY, centreInterval);
// Check results - we get every n-th point
float* check_x = new float[centreSize];
float* check_y = new float[centreSize];
cudaMemcpy(check_x, d_centresX, d_centreSize, cudaMemcpyDeviceToHost);
cudaMemcpy(check_y, d_centresY, d_centreSize, cudaMemcpyDeviceToHost);
printf("X: ");
for (int i = 0; i < centreSize; i++)
printf("%.2f ", check_x[i]);
printf("\nY: ");
for (int i = 0; i < centreSize; i++)
printf("%.2f ", check_y[i]);
printf("\n");
}
关于c++ - CUDA:对传递给 GPU 的数组的每个第 n 个点进行分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30547616/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!