- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想使用纹理 2D 内存来实现 double 。我想从纹理读取到共享内存并将 int2 转换为 double,然后传输回主机内存但我只根据需要获取第一行,所有其他行的值为 2.00000000。
#include<stdio.h>
#include<cuda.h>
#define Xdim 8
#define Ydim 8
texture<int2,2>me_texture;
static __inline__ __device__ double fetch_double(int2 p){
return __hiloint2double(p.y, p.x);
}
__global__ void kern(double *o, int pitch){
__shared__ double A[Xdim][Ydim];
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int j = blockIdx.y*blockDim.y + threadIdx.y;
int2 jj;
if(i<Xdim && j<Ydim){
jj = tex2D(me_texture, i, j);
A[threadIdx.x][threadIdx.y] = fetch_double(jj);
}
__syncthreads();
if(i<Xdim && j<Ydim){
o[j*Xdim + i] = A[threadIdx.x][threadIdx.y];
}
}
int main(int argc, char *argv[]){
double hbuf[Xdim][Ydim];
double hout[Xdim][Ydim];
double *dob;
double *dbuf;
size_t pitch_bytes;
cudaMallocPitch((void**)&dbuf, &pitch_bytes, sizeof(double)*Xdim, Ydim);
cudaMallocPitch((void**)&dob, &pitch_bytes, sizeof(double)*Xdim, Ydim);
hbuf[0][0] = 1.234567891234567;
hbuf[0][1] = 12.34567891234567;
hbuf[0][2] = 123.4567891234567;
hbuf[0][3] = 1234.567891234567;
hbuf[0][4] = 12345.67891234567;
hbuf[0][5] = 123456.7891234567;
hbuf[0][6] = 1234567.891234567;
hbuf[0][7] = 12345678.91234567;
hbuf[1][0] = 123456789.1234567;
hbuf[1][1] = 1234567891.234567;
hbuf[1][2] = 12345678912.34567;
hbuf[1][3] = 123456789123.4567;
hbuf[1][4] = 1234567891234.567;
hbuf[1][5] = 12345678912345.67;
hbuf[1][6] = 123456789123456.7;
hbuf[1][7] = 1234567891234567;
hbuf[2][0] = 123456789.7654321;
hbuf[2][1] = 1234567897.654321;
hbuf[2][2] = 12345678976.54321;
hbuf[2][3] = 123456789765.4321;
hbuf[2][4] = 1234567897654.321;
hbuf[2][5] = 12345678976543.21;
hbuf[2][6] = 123456789765432.1;
hbuf[2][7] = 1234567897654321;
hbuf[3][0] = 9.876543211234567;
hbuf[3][1] = 98.76543211234567;
hbuf[3][2] = 987.6543211234567;
hbuf[3][3] = 9876.543211234567;
hbuf[3][4] = 98765.43211234567;
hbuf[3][5] = 987654.3211234567;
hbuf[3][6] = 9876543.211234567;
hbuf[3][7] = 98765432.11234567;
hbuf[4][0] = 987654321.1234567;
hbuf[4][1] = 9876543211.234567;
hbuf[4][2] = 98765432112.34567;
hbuf[4][3] = 987654321123.4567;
hbuf[4][4] = 9876543211234.567;
hbuf[4][5] = 98765432112345.67;
hbuf[4][6] = 987654321123456.7;
hbuf[4][7] = 9876543211234567;
hbuf[5][0] = 987654321.7654321;
hbuf[5][1] = 9876543217.654321;
hbuf[5][2] = 98765432176.54321;
hbuf[5][3] = 987654321765.4321;
hbuf[5][4] = 9876543217654.321;
hbuf[5][5] = 98765432176543.21;
hbuf[5][6] = 987654321765432.1;
hbuf[5][7] = 9876543217654321;
hbuf[6][0] = 1234567891234567;
hbuf[6][1] = 123456789123456.7;
hbuf[6][2] = 12345678912345.67;
hbuf[6][3] = 1234567891234.567;
hbuf[6][4] = 123456789123.4567;
hbuf[6][5] = 12345678912.34567;
hbuf[6][6] = 1234567891.234567;
hbuf[6][7] = 123456789.1234567;
hbuf[7][0] = 12345678.91234567;
hbuf[7][1] = 1234567.891234567;
hbuf[7][2] = 123456.7891234567;
hbuf[7][3] = 12345.67891234567;
hbuf[7][4] = 1234.567891234567;
hbuf[7][5] = 123.4567891234567;
hbuf[7][6] = 12.34567891234567;
hbuf[7][7] = 1.234567891234567;
for (int i=0; i<Xdim; i++){
for(int j=0; j<Ydim; j++){
printf("%.16f\t", hbuf[i][j]);
}
printf("\n");
}
cudaMemcpy2D(dbuf, pitch_bytes, hbuf, Xdim*sizeof(double), Xdim*sizeof(double), Ydim, cudaMemcpyHostToDevice);
me_texture.addressMode[0] = cudaAddressModeClamp;
me_texture.addressMode[1] = cudaAddressModeClamp;
me_texture.filterMode = cudaFilterModeLinear;
me_texture.normalized = false;
cudaBindTexture2D(0, me_texture, dbuf, cudaCreateChannelDesc(32,32,0,0, cudaChannelFormatKindSigned), Xdim, Ydim, pitch_bytes );
int pitch = pitch_bytes/sizeof(double);
kern<<<1, 64>>>(dob, pitch);
cudaMemcpy2D(hout,Xdim*sizeof(double), dob, pitch_bytes, Xdim*sizeof(double),Ydim, cudaMemcpyDeviceToHost);
printf("\nI am Fine\n");
for(int i = 0 ; i < Xdim ; i++){
for(int j=0; j<Ydim; j++){
printf("%.16f\t", hout[i][j]);
}
printf("\n");
}
cudaUnbindTexture(me_texture);
cudaFree(dbuf);
cudaFree(dob);
return 0;
}
最佳答案
如果您更改以下内容,上面的代码可以正常工作。替换
kern<<<1, 64>>>(..., ..)
到
dim3 blockPerGrid(1, 1)
dim3 threadPerBlock(8, 8)
kern<<<blockPerGrid, threadPerBlock>>>(....)
此处将 Xdim 更改为 pitch
o[j*pitch + i] = A[threadIdx.x][threadIdx.y];
并将 cudaFilterModeLinear 更改为 cudaFilterModePoint 。编译时需要指定计算能力,假设你的计算能力是3.0,那么就是
nvcc -arch=sm_30 file.cu
关于CUDA C - 如何使用Texture2D实现 double 浮点,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33739373/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!