gpt4 book ai didi

javascript - TensorflowJS:计算多个张量之间的距离或相似度的最佳方法?

转载 作者:行者123 更新时间:2023-11-30 19:29:56 25 4
gpt4 key购买 nike

我正在编写一个算法,需要我比较两个不同的张量数组,datasetcentroidsdataset 的张量比 centroids 多 1000 个,并且所有张量都具有相同的维度 ([1 x n])。

我目前的解决方案(下面的代码)如下:对于 dataset 中的每个张量,找到该张量与 centroids 中所有张量之间的距离,然后存储索引最近的质心

dataset.forEach(d => {
const distances = centroids.map(centroid => getEuclidianDistance(d.tensor, centroid));
const centroidIndex = distances.indexOf(Math.min(...distances));
d.centroid = centroidIndex;
})

这有效,但速度很慢。也是嵌套循环,感觉效率低下。

有没有更好的方法来使用 tensorflowjs(即通过某种相似性矩阵?)。

谢谢!

附言- 如果一个特定的解决方案需要一个特定的距离函数,我完全愿意改变我的。目前我的距离函数如下:

    getEuclidianDistance(arr1, arr2) {
// calculate euclidian distance between two arrays
let distTensor = tf.tidy(() => {
const distance = tf.squaredDifference(arr1, arr2).sum().sqrt();
return distance.dataSync()
})
return distTensor[0];
}

最佳答案

几个月前我有一个类似的要求,给定一个 2d 点,我希望从一组线段中找到最接近该点的线段。我努力尝试强制 tensorflowjs 高效地执行此操作,并最终偶然发现了 gpu.js,它更适合编译自定义 GPU 内核函数。

在下面我编写的示例中,我有表示 11 个 (X,Y) 坐标的数组和表示 5 个 (X,Y) 坐标的另一对数组。结果将是一个 11x5 矩阵,它计算两组点之间的每个距离。关键函数是“kernel”,它由 gpu.js 编译用于在 GPU 核心上运行,本质上是计算来自 11 坐标和 5 坐标的一对点之间的距离。从理论上讲,这个内核函数将跨越许多 GPU 内核来加速性能。即,在这种情况下一次执行所有 55 个。 (我说“理论上”,因为据我所知,gpu.js 利用了 webGL 着色器映射功能,并且我不完全确定堆栈中涉及的虚拟化层对 GPU 核心实际执行工作的影响。 ..)

结果是一个 11x5 矩阵,其中包含与每个点对组合的距离,然后将这个 11x5 矩阵通过管道传输到“kernelMin”,这会慢一点,因为它会循环遍历结果以寻找最小值,并捕获最小值的索引。也就是说,应该有 11 个并发 GPU 核心努力寻找 5 个坐标中哪个最接近。

const kernel = gpu.createKernel(function(x0, y0, x1, y1) {
let dx = x1[this.thread.y][0] - x0[0][this.thread.x];
let dy = y1[this.thread.y][0] - y0[0][this.thread.x];
return Math.sqrt(dx * dx + dy * dy);
}).setPipeline(true).setOutput([11,5]);

const result1 = kernel(
GPU.input(
new Float32Array([0,10,20,30,40,50,60,70,80,90,100]),
[11,1]
),
GPU.input(
new Float32Array([100,100,100,100,100,100,100,100,100,100,100]),
[11,1]
),
GPU.input(
new Float32Array([0,30,50,70,100]),
[1,5]
),
GPU.input(
new Float32Array([10,10,10,10,10]),
[1,5]
)
);

console.log(result1.toArray());

const kernelMin = gpu.createKernel(function(a) {
let minVal = 1000000;
let minIdx = 0;
for (let y = 0; y < 5; y++) {
if (a[y][this.thread.x] < minVal) {
minVal = a[y][this.thread.x];
minIdx = y;
}
}
return [minVal,minIdx];
}).setOutput([11]);

const result2 = kernelMin(result1);

console.log(result2);

最终输出是...

0: Float32Array(2) [90, 0]
1: Float32Array(2) [90.55384826660156, 0]
2: Float32Array(2) [90.55384826660156, 1]
3: Float32Array(2) [90, 1]
4: Float32Array(2) [90.55384826660156, 1]
5: Float32Array(2) [90, 2]
6: Float32Array(2) [90.55384826660156, 2]
7: Float32Array(2) [90, 3]
8: Float32Array(2) [90.55384826660156, 3]
9: Float32Array(2) [90.55384826660156, 4]
10: Float32Array(2) [90, 4]

请注意,为清楚起见,我已将矩阵大小硬编码到示例中。 Gpu.js 显然接受变量。此外,在您的情况下,根据矩阵的大小,您可能必须根据容纳完整的交叉距离矩阵所需的 GPU RAM 数量将问题分解为多个 block ...

我意识到这不是 tensorflowjs,但希望这对您有所帮助。

编辑 - 通过 TensorFlow.JS

花了几分钟移植到 tensorflow.js。核心概念是构建 x 和 y 值矩阵,为执行批量计算做准备。

const x0 = tf.tensor1d([0,10,20,30,40,50,60,70,80,90,100]);
const y0 = tf.tensor1d([100,100,100,100,100,100,100,100,100,100,100]);

const x1 = tf.tensor1d([0,30,50,70,100]);
const y1 = tf.tensor1d([10,10,10,10,10]);

const x0mat = x0.tile([5]).reshape([5,11]);
const y0mat = y0.tile([5]).reshape([5,11]);
const x1mat = x1.tile([11]).reshape([11,5]).transpose();
const y1mat = y1.tile([11]).reshape([11,5]).transpose();

x0mat.print();
x1mat.print();
const xDeltas = x1mat.squaredDifference(x0mat);

y0mat.print();
y1mat.print();
const yDeltas = y1mat.squaredDifference(y0mat);

const distance = xDeltas.add(yDeltas).sqrt();
distance.print();

distance.argMin(1).print();
distance.min(1).print();

结果...

Tensor - x0mat
[[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]]
Tensor - x1mat
[[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ],
[30 , 30 , 30 , 30 , 30 , 30 , 30 , 30 , 30 , 30 , 30 ],
[50 , 50 , 50 , 50 , 50 , 50 , 50 , 50 , 50 , 50 , 50 ],
[70 , 70 , 70 , 70 , 70 , 70 , 70 , 70 , 70 , 70 , 70 ],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]]
Tensor - y0mat
[[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]]
Tensor - y1mat
[[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]]
Tensor - distance
[[90 , 90.5538483 , 92.1954422 , 94.8683319, 98.4885788 , 102.9562988, 108.1665344, 114.01754 , 120.415947 , 127.2792206, 134.5362396],
[94.8683319 , 92.1954422 , 90.5538483 , 90 , 90.5538483 , 92.1954422 , 94.8683319 , 98.4885788, 102.9562988, 108.1665344, 114.01754 ],
[102.9562988, 98.4885788 , 94.8683319 , 92.1954422, 90.5538483 , 90 , 90.5538483 , 92.1954422, 94.8683319 , 98.4885788 , 102.9562988],
[114.01754 , 108.1665344, 102.9562988, 98.4885788, 94.8683319 , 92.1954422 , 90.5538483 , 90 , 90.5538483 , 92.1954422 , 94.8683319 ],
[134.5362396, 127.2792206, 120.415947 , 114.01754 , 108.1665344, 102.9562988, 98.4885788 , 94.8683319, 92.1954422 , 90.5538483 , 90 ]]
Tensor - argMin of distance
[0, 3, 5, 7, 10]
Tensor - min of distance
[90, 90, 90, 90, 90]

代码按步骤分解以显示基本概念。我相信它可以进一步压缩和优化。

关于javascript - TensorflowJS:计算多个张量之间的距离或相似度的最佳方法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56521807/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com