gpt4 book ai didi

c - opencv跟踪点

转载 作者:行者123 更新时间:2023-11-30 18:09:42 25 4
gpt4 key购买 nike

我想将点放在视频帧的坐标上,我确定并跟踪它们,就像 opencv 示例“lk demo”

我不明白该示例。哪些函数放置点并跟踪它们

感谢您的建议

/* Demo of modified Lucas-Kanade optical flow algorithm.
See the printf below */

#ifdef _CH_
#pragma package <opencv>
#endif

#define CV_NO_BACKWARD_COMPATIBILITY

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <ctype.h>
#endif

IplImage *image = 0, *grey = 0, *prev_grey = 0, *pyramid = 0, *prev_pyramid = 0, *swap_temp;

int win_size = 10;
const int MAX_COUNT = 500;
CvPoint2D32f* points[2] = {0,0}, *swap_points;
char* status = 0;
int count = 0;
int need_to_init = 0;
int night_mode = 0;
int flags = 0;
int add_remove_pt = 0;
CvPoint pt;


void on_mouse( int event, int x, int y, int flags, void* param )
{
if( !image )
return;

if( image->origin )
y = image->height - y;

if( event == CV_EVENT_LBUTTONDOWN )
{
pt = cvPoint(x,y);
add_remove_pt = 1;
}
}


int main( int argc, char** argv )
{
CvCapture* capture = 0;

if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
else if( argc == 2 )
capture = cvCaptureFromAVI( argv[1] );

if( !capture )
{
fprintf(stderr,"Could not initialize capturing...\n");
return -1;
}

/* print a welcome message, and the OpenCV version */
printf ("Welcome to lkdemo, using OpenCV version %s (%d.%d.%d)\n",
CV_VERSION,
CV_MAJOR_VERSION, CV_MINOR_VERSION, CV_SUBMINOR_VERSION);

printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - auto-initialize tracking\n"
"\tc - delete all the points\n"
"\tn - switch the \"night\" mode on/off\n"
"To add/remove a feature point click it\n" );

cvNamedWindow( "LkDemo", 0 );
cvSetMouseCallback( "LkDemo", on_mouse, 0 );

for(;;)
{
IplImage* frame = 0;
int i, k, c;

frame = cvQueryFrame( capture );
if( !frame )
break;

if( !image )
{
/* allocate all the buffers */
image = cvCreateImage( cvGetSize(frame), 8, 3 );
image->origin = frame->origin;
grey = cvCreateImage( cvGetSize(frame), 8, 1 );
prev_grey = cvCreateImage( cvGetSize(frame), 8, 1 );
pyramid = cvCreateImage( cvGetSize(frame), 8, 1 );
prev_pyramid = cvCreateImage( cvGetSize(frame), 8, 1 );
points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0]));
points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0]));
status = (char*)cvAlloc(MAX_COUNT);
flags = 0;
}

cvCopy( frame, image, 0 );
cvCvtColor( image, grey, CV_BGR2GRAY );

if( night_mode )
cvZero( image );

if( need_to_init )
{
/* automatic initialization */
IplImage* eig = cvCreateImage( cvGetSize(grey), 32, 1 );
IplImage* temp = cvCreateImage( cvGetSize(grey), 32, 1 );
double quality = 0.01;
double min_distance = 10;

count = MAX_COUNT;
cvGoodFeaturesToTrack( grey, eig, temp, points[1], &count,
quality, min_distance, 0, 3, 0, 0.04 );
cvFindCornerSubPix( grey, points[1], count,
cvSize(win_size,win_size), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03));
cvReleaseImage( &eig );
cvReleaseImage( &temp );

add_remove_pt = 0;
}
else if( count > 0 )
{
cvCalcOpticalFlowPyrLK( prev_grey, grey, prev_pyramid, pyramid,
points[0], points[1], count, cvSize(win_size,win_size), 3, status, 0,
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03), flags );
flags |= CV_LKFLOW_PYR_A_READY;
for( i = k = 0; i < count; i++ )
{
if( add_remove_pt )
{
double dx = pt.x - points[1][i].x;
double dy = pt.y - points[1][i].y;

if( dx*dx + dy*dy <= 25 )
{
add_remove_pt = 0;
continue;
}
}

if( !status[i] )
continue;

points[1][k++] = points[1][i];
cvCircle( image, cvPointFrom32f(points[1][i]), 3, CV_RGB(0,255,0), -1, 8,0);
}
count = k;
}

if( add_remove_pt && count < MAX_COUNT )
{
points[1][count++] = cvPointTo32f(pt);
cvFindCornerSubPix( grey, points[1] + count - 1, 1,
cvSize(win_size,win_size), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03));
add_remove_pt = 0;
}

CV_SWAP( prev_grey, grey, swap_temp );
CV_SWAP( prev_pyramid, pyramid, swap_temp );
CV_SWAP( points[0], points[1], swap_points );
need_to_init = 0;
cvShowImage( "LkDemo", image );

c = cvWaitKey(10);
if( (char)c == 27 )
break;
switch( (char) c )
{
case 'r':
need_to_init = 1;
break;
case 'c':
count = 0;
break;
case 'n':
night_mode ^= 1;
break;
default:
;
}
}

cvReleaseCapture( &capture );
cvDestroyWindow("LkDemo");

return 0;
}

#ifdef _EiC
main(1,"lkdemo.c");
#endif

最佳答案

算法的第一次迭代:您只需找到一些您想要跟踪的特征。它们存储在点数组中,并在图像上用绿点标记以供您跟踪。然后,在后续迭代中,该算法使用光流函数来跟踪点的移动。

cvGoodFeaturesToTrack 和 cvFindCornerSubPix 正在初始化您关注的点,cvCalcOpticalFlowPyrLK 跟踪给定点的运动,cvCircle 将绿点放在点所在的位置。

希望这有帮助。

关于c - opencv跟踪点,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/1606368/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com