- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经为上述问题编写了一个解决方案,但是有人可以建议一个优化的方法吗?我已经遍历了 count(2 到 n) 的数组,其中 count 正在查找大小为 count*count 的子数组。
int n = 5; //Size of array, you may take a dynamic array as well
int a[5][5] = {{1,2,3,4,5},{2,4,7,-2,1},{4,3,9,9,1},{5,2,6,8,0},{5,4,3,2,1}};
int max = 0;
int **tempStore, size;
for(int count = 2; count < n; count++)
{
for(int i = 0; i <= (n-count); i++)
{
for(int j = 0; j <= (n-count); j++)
{
int **temp = new int*[count];
for(int i = 0; i < count; ++i) {
temp[i] = new int[count];
}
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
temp[k][l] = a[i+k][j+l];
}
}
//printing fetched array
int sum = 0;
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
sum += temp[k][l];
cout<<temp[k][l]<<" ";
}cout<<endl;
}cout<<"Sum = "<<sum<<endl;
if(sum > max)
{
max = sum;
size = count;
tempStore = new int*[count];
for(int i = 0; i < count; ++i) {
tempStore[i] = new int[count];
}
//Locking the max sum array
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
tempStore[k][l] = temp[k][l];
}
}
}
//printing finished
cout<<"------------------\n";
//Clear temp memory
for(int i = 0; i < size; ++i) {
delete[] temp[i];
}
delete[] temp;
}
}
}
cout<<"Max sum is = "<<max<<endl;
for(int k = 0; k < size; k++)
{
for(int l = 0; l <size; l++)
{
cout<<tempStore[k][l]<<" ";
}cout<<endl;
}cout<<"-------------------------";
//Clear tempStore memory
for(int i = 0; i < size; ++i) {
delete[] tempStore[i];
}
delete[] tempStore;
示例:
1 2 3 4 5
2 4 7 -2 1
4 3 9 9 1
5 2 6 8 0
5 4 3 2 1
输出:最大总和 = 71
2 4 7 -2
4 3 9 9
5 2 6 8
5 4 3 2
最佳答案
这个问题最好使用动态编程 (DP) 或内存来解决。
假设 n 非常大,您会发现重新计算每个可能的矩阵组合的总和将花费太长时间,因此如果您可以重用以前的计算,那么一切都会变得更快。
这个想法是从较小的矩阵开始,并使用较小矩阵的预先计算值来计算较大矩阵的总和。
long long *sub_solutions = new long long[n*n*m];
#define at(r,c,i) sub_solutions[((i)*n + (r))*n + (c)]
// Winner:
unsigned int w_row = 0, w_col = 0, w_size = 0;
// Fill first layer:
for ( int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
at(r, c, 0) = data[r][c];
if (data[r][c] > data[w_row][w_col]) {
w_row = r;
w_col = c;
}
}
}
// Fill remaining layers.
for ( int size = 1; size < m; size++) {
for ( int row = 0; row < n-size; row++) {
for (int col = 0; col < n-size; col++) {
long long sum = data[row+size][col+size];
for (int i = 0; i < size; i++) {
sum += data[row+size][col+i];
sum += data[row+i][col+size];
}
sum += at(row, col, size-1); // Reuse previous solution.
at(row, col, size) = sum;
if (sum > at(w_row, w_col, w_size)) { // Could optimize this part if you only need the sum.
w_row = row;
w_col = col;
w_size = size;
}
}
}
}
// The largest sum is of the sub_matrix starting a w_row, w_col, and has dimensions w_size+1.
long long largest = at(w_row, w_col, w_size);
delete [] sub_solutions;
该算法的复杂度为:O(n*n*m*m)
或更准确地说:0.5*n*(n-1)*m*(m-1)
。 (现在我还没有对此进行测试,所以如果有任何错误请告诉我。)
关于c++ - 找到一个 m*m (2<=m<n) 且总和最大的子数组;从 n*n int 数组中(有 +ve、-ve、0),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24735439/
我看到以下宏 here . static const char LogTable256[256] = { #define LT(n) n, n, n, n, n, n, n, n, n, n, n,
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
所以我得到了这个算法我需要计算它的时间复杂度 这样的 for i=1 to n do k=i while (k<=n) do FLIP(A[k]) k
n 的 n 次方(即 n^n)是多项式吗? T(n) = 2T(n/2) + n^n 可以用master方法求解吗? 最佳答案 它不仅不是多项式,而且比阶乘还差。 O(n^n) 支配 O(n!)。同样
我正在研究一种算法,它可以在带有变音符号的字符(tilde、circumflex、caret、umlaut、caron)及其“简单”字符之间进行映射。 例如: ń ǹ ň ñ ṅ ņ ṇ
嗯..我从昨天开始学习APL。我正在观看 YouTube 视频,从基础开始学习各种符号,我正在使用 NARS2000。 我想要的是打印斐波那契数列。我知道有好几种代码,但是因为我没有研究过高深的东西,
已关闭。这个问题是 off-topic 。目前不接受答案。 想要改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 已关闭12 年前。 Improve th
谁能帮我从 N * N * N → N 中找到一个双射数学函数,它接受三个参数 x、y 和 z 并返回数字 n? 我想知道函数 f 及其反函数 f',如果我有 n,我将能够通过应用 f'(n) 来
场景: 用户可以在字符串格式的方程式中输入任意数量的括号对。但是,我需要检查以确保所有括号 ( 或 ) 都有一个相邻的乘数符号 *。因此 3( 应该是 3*( 和 )3 应该是 )*3。 我需要将所有
在 Java 中,表达式: n+++n 似乎评估为等同于: n++ + n 尽管 +n 是一个有效的一元运算符,其优先级高于 n + n 中的算术 + 运算符。因此编译器似乎假设运算符不能是一元运算符
当我阅读 this 问题我记得有人曾经告诉我(很多年前),从汇编程序的角度来看,这两个操作非常不同: n = 0; n = n - n; 这是真的吗?如果是,为什么会这样? 编辑: 正如一些回复所指出
我正在尝试在reveal.js 中加载外部markdown 文件,该文件已编写为遵守数据分隔符语法: You can write your content as a separate file and
我试图弄清楚如何使用 Javascript 生成一个随机 11 个字符串,该字符串需要特定的字母/数字序列,以及位置。 ----------------------------------------
我最近偶然发现了一个资源,其中 2T(n/2) + n/log n 类型 的递归被 MM 宣布为无法解决。 直到今天,当另一种资源被证明是矛盾的(在某种意义上)时,我才接受它作为引理。 根据资源(下面
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 8 年前。 Improve th
我完成的一个代码遵循这个模式: for (i = 0; i < N; i++){ // O(N) //do some processing... } sort(array, array + N
有没有办法证明 f(n) + g(n) = theta(n^2) 还是不可能?假设 f(n) = theta(n^2) & g(n) = O(n^2) 我尝试了以下方法:f(n) = O(n^2) &
所以我目前正在尝试计算我拥有的一些数据的 Pearson R 和 p 值。这是通过以下代码完成的: import numpy as np from scipy.stats import pearson
ltree 列的默认排序为文本。示例:我的表 id、parentid 和 wbs 中有 3 列。 ltree 列 - wbs 将 1.1.12, 1.1.1, 1.1.2 存储在不同的行中。按 wbs
我的目标是编写一个程序来计算在 python 中表示数字所需的位数,如果我选择 number = -1 或任何负数,程序不会终止,这是我的代码: number = -1 cnt = 0 while(n
我是一名优秀的程序员,十分优秀!