gpt4 book ai didi

c - 在 Eclipse IDE 中使用 C 语言的 LIBSVM 进行二进制类机器学习时出错

转载 作者:行者123 更新时间:2023-11-30 16:42:22 26 4
gpt4 key购买 nike

我正在尝试使用LIBSVM执行二进制类 machine learning (仅限两个类)在 Eclipse 上使用 C。在开始使用训练数据之前,我尝试运行一个简单的 XOR 问题来查看我的 LIBSVM 应用程序是否可以预测正确的输出值(应该是 +1)。

但是,在构建项目后,我遇到了错误,例如 对 '_Heap_Begin' 的 undefined reference 对 '_Heap_Limit' 的 undefined reference 对 '_Heap_Limit' 的 undefined reference '__reset_hardware'。

我将svm.h文件添加到“include”文件夹,并将svm_train.csvm.cpp文件添加到“src” ' 文件夹,并且我已经在源文件中#include 'svm.h',这是我从 LIBSVM 中的README 文件中遵循的指令。我遵循了 README 文件中的所有说明,其中指出“您需要在 C/C++ 源文件中 #include“svm.h”,并将您的程序与 `svm.cpp' 链接起来。”

我在这里做错了什么?

文件svm.h

#ifndef _LIBSVM_H
#define _LIBSVM_H

#define LIBSVM_VERSION 322

#ifdef __cplusplus
extern "C" {
#endif

extern int libsvm_version;

struct svm_node
{
int index;
double value;
};

struct svm_problem
{
int l;
double *y;
struct svm_node **x;
};

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */

struct svm_parameter
{
int svm_type;
int kernel_type;
int degree; /* For poly */
double gamma; /* For poly/rbf/sigmoid */
double coef0; /* For poly/sigmoid */

/* These are for training only */
double cache_size; /* In MB */
double eps; /* Stopping criteria */
double C; /* For C_SVC, EPSILON_SVR and NU_SVR */
int nr_weight; /* For C_SVC */
int *weight_label; /* For C_SVC */
double* weight; /* For C_SVC */
double nu; /* For NU_SVC, ONE_CLASS, and NU_SVR */
double p; /* For EPSILON_SVR */
int shrinking; /* Use the shrinking heuristics */
int probability; /* Do probability estimates */
};

//
// svm_model
//
struct svm_model
{
struct svm_parameter param; /* Parameter */
int nr_class; /* Number of classes, = 2 in regression/one class svm */
int l; /* Total #SV */
struct svm_node **SV; /* SVs (SV[l]) */
double **sv_coef; /* Coefficients for SVs in decision functions (sv_coef[k-1][l]) */
double *rho; /* Constants in decision functions (rho[k*(k-1)/2]) */
double *probA; /* Pariwise probability information */
double *probB;
int *sv_indices; /* sv_indices[0, ..., nSV-1] are values in [1, ..., num_traning_data] to indicate SVs in the training set */

/* For classification only */

int *label; /* Label of each class (label[k]) */
int *nSV; /* Number of SVs for each class (nSV[k]) */
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
/* XXX */
int free_sv; /* 1 if svm_model is created by svm_load_model*/
/* 0 if svm_model is created by svm_train */
};

struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);

int svm_save_model(const char *model_file_name, const struct svm_model *model);
struct svm_model *svm_load_model(const char *model_file_name);

int svm_get_svm_type(const struct svm_model *model);
int svm_get_nr_class(const struct svm_model *model);
void svm_get_labels(const struct svm_model *model, int *label);
void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
int svm_get_nr_sv(const struct svm_model *model);
double svm_get_svr_probability(const struct svm_model *model);

double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
double svm_predict(const struct svm_model *model, const struct svm_node *x);
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);

void svm_free_model_content(struct svm_model *model_ptr);
void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
void svm_destroy_param(struct svm_parameter *param);

const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
int svm_check_probability_model(const struct svm_model *model);

void svm_set_print_string_function(void (*print_func)(const char *));

#ifdef __cplusplus
}
#endif

#endif /* _LIBSVM_H */

文件svm_train.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include "svm.h"

#define Malloc(type,n) (type *)malloc((n)*sizeof(type))

struct svm_parameter param; // Set by parse_command_line
struct svm_problem prob; // Set by read_problem
struct svm_model *model;
struct svm_node *x_space;
struct svm_node ** x;
struct svm_node *testnode;

void main(void)
{
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0.5;
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 100;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;


// Problem definition-------------------------------------------------------------
prob.l = 4;

// x values matrix of xor values (training data)
double matrix[prob.l][2];
matrix[0][0] = 1;
matrix[0][1] = 1;

matrix[1][0] = 1;
matrix[1][1] = 0;

matrix[2][0] = 0;
matrix[2][1] = 1;

matrix[3][0] = 0;
matrix[3][1] = 0;

// This part i do not understand
struct svm_node** x = (struct svm_node * *)malloc((prob.l)*sizeof(struct svm_node *));

// Trying to assign from matrix to svm_node training examples
for (int row = 0; row <prob.l; row++)
{
struct svm_node* x_space = Malloc(struct svm_node, 3);
for (int col = 0; col < 2; col++)
{
x_space[col].index = col;
x_space[col].value = matrix[row][col];
}
x_space[2].index = -1; // Each row of properties should be terminated with a -1 according to the readme
x[row] = x_space;
}

prob.x = x;

// Y values
prob.y = (double *)malloc((prob.l)*sizeof(double));
prob.y[0] = -1;
prob.y[1] = 1;
prob.y[2] = 1;
prob.y[3] = -1;

// Train model---------------------------------------------------------------------
struct svm_model *model = svm_train(&prob, &param);

// Test model----------------------------------------------------------------------
struct svm_node* testnode = (struct svm_node *) malloc((3)*sizeof(struct svm_node));
testnode[0].index = 0;
testnode[0].value = 1;
testnode[1].index = 1;
testnode[1].value = 0;
testnode[2].index = -1;

double retval = svm_predict(model, testnode);

svm_destroy_param(&param);
free(prob.y);
free(prob.x);
free(x_space);
}

最佳答案

那些 undefined symbol 似乎与 SVMs 无关,但是到你的工具链。您的开发环境必须有一个您未链接的标准库(我们无法猜测,因为我们不知道您正在开发的平台)。

关于c - 在 Eclipse IDE 中使用 C 语言的 LIBSVM 进行二进制类机器学习时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45853698/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com