gpt4 book ai didi

c - 并行化函数,它将计算所有 vector 的总和等于 vector 元素和不大于 k 的元素

转载 作者:行者123 更新时间:2023-11-30 15:44:31 25 4
gpt4 key购买 nike

我想并行化 CUDA C 中的一个函数,该函数将对 vector 元素和不大于 k 的元素之和相等的所有 vector 进行计数。例如,如果 vector 元素的数量 n 为 5,sum=10 且 k=3,则满足此条件的 vector 数量为 101。我已经在 CUDA C 中编写了此函数,但问题是当 block 和线程大于 1。我知道问题出在 for 周期中,我应该更改它,但我不知道从哪里开始。当我使用等于 1 的 block 和线程调用该函数时,该函数正在以经典方式工作,一切都很好,但在这种情况下,该函数不是并行化的。

该程序的源代码为:

//function that count number of vectors
__device__ void count(int *vector, int *total, int n, int s)
{
int i,sum=0;
for(i=blockIdx.x*blockDim.x+threadIdx.x;i<n;i+=blockDim.x*gridDim.x)
{
sum+=vector[i];
__syncthreads();
}
if(sum==s)
{
total[0]=total[0]+1;
}
}

//main function
__global__ void computeVectors(int *vector, int n, int kk, int s, int *total)
{
int k=0;
int j,i,next;

while(1)
{
//this is the problem, in for cycle
for(j=blockIdx.x*blockDim.x+threadIdx.x; j<=kk; j+=blockDim.x*gridDim.x)
{
vector[k]=j;
count(vector, total, n, s);
__syncthreads();
}
for(i=blockIdx.x*blockDim.x+threadIdx.x; i<n; i+=blockDim.x*gridDim.x)
{

if(vector[i]<kk)
break;
}
next=i;
vector[next]++;
for(i=blockIdx.x*blockDim.x+threadIdx.x; i<sledno; i+=blockDim.x*gridDim.x)
{
vector[i]=0;
__syncthreads();
}
k=0;
if(next>=n)
break;
}
}

int main()
{
cudaError_t err = cudaSuccess;

int n,k,sum;
int counter=0;

printf("Enter the length of vector n=");
scanf("%d",&n);
printf("Enter the max value of vector elements k=");
scanf("%d",&k);
printf("Enter the sum of vector elements sum=");
scanf("%d",&sum);

//initial vector with length n
int *vec_h, *vec_d;
size_t sizevec=n*sizeof(int);
vec_h=(int *)malloc(sizevec);
cudaMalloc((void **) &vec_d, sizevec);

for(counter=0; counter<n; counter++)
{
vec_h[counter]=0;
}
cudaMemcpy(vec_d, vec_h, sizevec, cudaMemcpyHostToDevice);

int *total_h, *total_d;
size_t size=1*sizeof(int);
total_h=(int *)malloc(size);
cudaMalloc((void **) &total_d, size);
total_h[0]=0;
cudaMemcpy(total_d, total_h, size, cudaMemcpyHostToDevice);

//calling the main function
computeVectors<<<1, 1>>>(vec_d, n, k, sum, total_d);

cudaThreadSynchronize();

err = cudaGetLastError();
if (err != cudaSuccess)
{
fprintf(stderr, "Error: %s!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
cudaMemcpy(total_h, total_d, size, cudaMemcpyDeviceToHost);
printf("Number of vectors that satisfy condition is %d\n", total_h[0]);

free(vec_h);
cudaFree(vec_d);

free(total_h);
cudaFree(total_d);

return 0;
}

最佳答案

这是一个示例暴力程序,用于枚举所有可能的 vector ,然后测试每个 vector 的总和以查看其是否与所需的总和匹配。

  • 假设n= vector 长度(以“数字”为单位)
  • 假设每个 vector “数字”都由一个无符号数量表示
  • 假设k=最大“数字”值+ 1
  • vector 空间的大小由k^n给出
  • 将此空间划分为连续的 vector 组以供每个线程处理:(k^n)/grid_size
  • 为每个线程生成起始 vector (即每个组中的起始 vector )
  • 然后,每个线程循环测试 vector 和并在必要时递增计数,然后“递增” vector ,直到每个线程处理完为其分配的连续 vector 组

程序:

#include <stdio.h>
#include <thrust/host_vector.h>
#include <sys/time.h>
#include <time.h>

#define MAX_N 12
#define nTPB 256
#define GRIDSIZE (32*nTPB)


#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)


// thrust code is to quickly prototype a CPU based
// method for verification
int increment(thrust::host_vector<unsigned> &data, unsigned max){
int pos = 0;
int done = 0;
int finished = 0;

while(!done){
data[pos]++;
if (data[pos] >= max) {
data[pos] = 0;
pos++;
if (pos >= data.size()){
done = 1;
finished = 1;
}
}
else done = 1;
}
return finished;
}

__constant__ unsigned long powers[MAX_N];

__device__ unsigned vec_sum(unsigned *vector, int size){
unsigned sum = 0;
for (int i=0; i<size; i++) sum += vector[(i*nTPB)];
return sum;
}

__device__ void create_vector(unsigned long index, unsigned *vector, int size){
unsigned long residual = index;
unsigned pos = size;
while ((residual > 0) && (pos > 0)){
unsigned long temp = residual/powers[pos-1];
vector[(pos-1)*nTPB] = temp;
residual -= temp*powers[pos-1];
pos--;
}
while (pos>0) {
vector[(pos-1)*nTPB] = 0;
pos--;
}
}
__device__ void increment_vector(unsigned *vector, int size, int k){
int pos = 0;
int done = 0;

while(!done){
vector[(pos*nTPB)]++;
if (vector[pos*nTPB] >= k) {
vector[pos*nTPB] = 0;
pos++;
if (pos >= size){
done = 1;
}
}
else done = 1;
}
}

__global__ void find_vector_match(unsigned long long int *count, int k, int n, unsigned sum){
__shared__ unsigned vecs[MAX_N *nTPB];
unsigned *vec = &(vecs[threadIdx.x]);
unsigned long idx = threadIdx.x+blockDim.x*blockIdx.x;
if (idx < (k*powers[n-1])){
unsigned long vec_count = 0;
unsigned long vecs_per_thread = (k*powers[n-1])/(gridDim.x*blockDim.x);
vecs_per_thread++;
unsigned long vec_num = idx*vecs_per_thread;
create_vector((vec_num), vec, n);
while ((vec_count < vecs_per_thread) && (vec_num < (k*powers[n-1]))){
if (vec_sum(vec, n) == sum) atomicAdd(count, 1UL);
increment_vector(vec, n, k);
vec_count++;
vec_num++;
}
}
}

int main(){

// calculate on CPU first for verification
struct timeval t1, t2, t3;
int n, k, sum;
printf("Enter the length of vector (maximum: %d) n=", MAX_N);
scanf("%d",&n);
printf("Enter the max value of vector elements k=");
scanf("%d",&k);
printf("Enter the sum of vector elements sum=");
scanf("%d",&sum);
int count = 0;
gettimeofday(&t1, NULL);
k++;

thrust::host_vector<unsigned> test(n);
thrust::fill(test.begin(), test.end(), 0);
int finished = 0;
do{
if (thrust::reduce(test.begin(), test.end()) == sum) count++;
finished = increment(test, k);
}
while (!finished);
gettimeofday(&t2, NULL);
printf("CPU count = %d, in %d seconds\n", count, t2.tv_sec - t1.tv_sec);
unsigned long h_powers[MAX_N];
h_powers[0] = 1;
if (n < MAX_N)
for (int i = 1; i<n; i++) h_powers[i] = h_powers[i-1]*k;
cudaMemcpyToSymbol(powers, h_powers, MAX_N*sizeof(unsigned long));
cudaCheckErrors("cudaMemcpyToSymbolfail");
unsigned long long int *h_count, *d_count;
h_count = (unsigned long long int *)malloc(sizeof(unsigned long long int));
cudaMalloc((void **)&d_count, sizeof(unsigned long long int));
cudaCheckErrors("cudaMalloc fail");
*h_count = 0;
cudaMemcpy(d_count, h_count, sizeof(unsigned long long int), cudaMemcpyHostToDevice);
cudaCheckErrors("cudaMemcpy H2D fail");
find_vector_match<<<(GRIDSIZE + nTPB -1)/nTPB, nTPB>>>(d_count, k, n, sum);
cudaMemcpy(h_count, d_count, sizeof(unsigned long long int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy D2H fail");
gettimeofday(&t3, NULL);
printf("GPU count = %d, in %d seconds\n", *h_count, t3.tv_sec - t2.tv_sec);

return 0;
}

编译:

$ nvcc -O3 -arch=sm_20 -o t260 t260.cu

示例输出:

$ ./t260
Enter the length of vector (maximum: 12) n=2
Enter the max value of vector elements k=3
Enter the sum of vector elements sum=4
CPU count = 3, in 0 seconds
GPU count = 3, in 0 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=5
Enter the max value of vector elements k=3
Enter the sum of vector elements sum=10
CPU count = 101, in 0 seconds
GPU count = 101, in 0 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=9
Enter the max value of vector elements k=9
Enter the sum of vector elements sum=20
CPU count = 2714319, in 12 seconds
GPU count = 2714319, in 1 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=10
Enter the max value of vector elements k=9
Enter the sum of vector elements sum=20
CPU count = 9091270, in 123 seconds
GPU count = 9091270, in 4 seconds

因此,对于大型问题,简单的暴力 GPU 代码似乎比简单的暴力单线程 CPU 代码快 30 倍左右。 (...在我的特定机器设置上:CPU = Xeon X5560,GPU = Quadro5000,CentOS 5.5,CUDA 5.0)

关于c - 并行化函数,它将计算所有 vector 的总和等于 vector 元素和不大于 k 的元素,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19456042/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com