gpt4 book ai didi

python - PyCUDA 正确使用结构

转载 作者:行者123 更新时间:2023-11-30 15:25:04 32 4
gpt4 key购买 nike

我正在尝试在 Pycuda 代码中实现一个结构,但出现越界错误。我尝试遵循 this教程,但我无法让它适用于我的情况。

该问题很可能是由于指针使用不当造成的,例如该教程表明必须分配指针 memsize 而不是数据 memsize。希望这里有人能给我一些见解......

示例代码:

#!/usr/bin/env python
#-*- coding:utf-8 -*-

import numpy as np
import pycuda.driver as cuda
import pycuda.tools as tools
import pycuda.autoinit

from mako.template import Template
from pycuda.compiler import SourceModule

src_template = Template(
"""
struct Dist {
%for s in xrange(ns):
float *dist${s};
%endfor
};

// return linear index based on x,y coordinate
__device__ int get_index(int xcoord, int ycoord)
{
return ycoord + xcoord * ${ny};
};

__global__ void initialize(float *rho, float *ux, float *uy, Dist *ftmp)
{
int idx;
float dens, velx, vely, vv, ev;

for (int y = threadIdx.x + blockIdx.x * blockDim.x;
y < ${ny};
y += blockDim.x * gridDim.x)
{
for (int x = threadIdx.y + blockIdx.y * blockDim.y;
x < ${nx};
x += blockDim.y * gridDim.y)
{
if ((x > 0) && (x < ${nx-1}) && (y > 0) && (y < ${ny-1}))
{
idx = get_index(x,y);
dens = rho[idx]; velx = ux[idx]; vely = uy[idx];
vv = velx*velx + vely*vely;

%for s in xrange(ns):
// s = ${s}; \vec{e}[${s}] = [${ex[s]},${ey[s]}]
ev = ${float(ex[s])}f*velx + ${float(ey[s])}f*vely;
ftmp->dist${s}[idx] = ${w[s]}f*dens*(1.0f+3.0f*ev+4.5f*ev*ev-1.5f*vv);
%endfor
}
}
}
}
"""
)

class channelFlow:
# initialize channelFlow
def __init__(self, nx, ny):
self.nx, self.ny = nx, ny

max_threads_per_block = tools.DeviceData().max_threads
self.blocksize = (ny if ny<32 else 32, nx if nx<32 else 32, 1) # threads per block
self.gridsize = (ny/self.blocksize[0], nx/self.blocksize[1], 1) # blocks per grid

self.ns = 9
self.w = np.array([4./9, 1./9, 1./9, 1./9, 1./9, 1./36, 1./36, 1./36, 1./36])
self.ex = np.array([0, 1, -1, 0, 0, 1, -1, -1, 1])
self.ey = np.array([0, 0, 0, 1, -1, 1, 1, -1, -1])

self.ctx = { 'nx': self.nx, 'ny': self.ny, 'ns': self.ns,
'w': self.w, 'ex': self.ex, 'ey': self.ey
}

dtype = np.float32
self.ftmp = np.zeros([self.nx,self.ny,self.ns]).astype(dtype)
self.rho = np.zeros([self.nx,self.ny]).astype(dtype)
self.ux = np.zeros([self.nx,self.ny]).astype(dtype)
self.uy = np.zeros([self.nx,self.ny]).astype(dtype)

self.ftmp_gpu = cuda.mem_alloc(self.ftmp.nbytes)
self.rho_gpu = cuda.mem_alloc(self.rho.nbytes)
self.ux_gpu = cuda.mem_alloc(self.ux.nbytes)
self.uy_gpu = cuda.mem_alloc(self.uy.nbytes)

def run(self):
src = src_template.render(**self.ctx)
code = SourceModule(src)
initialize = code.get_function('initialize')

self.rho[:,:] = 1.
self.ux[:,:] = 0.
self.uy[:,:] = 0.

cuda.memcpy_htod(self.rho_gpu, self.rho)
cuda.memcpy_htod(self.ux_gpu, self.ux)
cuda.memcpy_htod(self.uy_gpu, self.uy)

initialize(
self.rho_gpu, self.ux_gpu, self.uy_gpu,
self.ftmp_gpu,
block=self.blocksize, grid=self.gridsize
)

if __name__ == "__main__":
sim = channelFlow(64,64); sim.run()

最佳答案

我能够使用可用的 GPUStruct python 模块在 pycuda 中正确实现数组结构 here并通过修复指针的不当使用来:

ftmp->dist${s}[idx] = ${w[s]}f*dens*(1.0f+3.0f*ev+4.5f*ev*ev-1.5f*vv);

更改为:

float *ftmp${s}_ptr = ftmp->dist${s};
ftmp${s}_ptr[idx] = ${w[s]}f*dens*(1.0f+3.0f*ev+4.5f*ev*ev-1.5f*vv);

修改后的代码显示了 GPUStruct 实现的详细信息:

#!/usr/bin/env python
#-*- coding:utf-8 -*-

import numpy as np
import pycuda.driver as cuda
import pycuda.tools as tools
import pycuda.autoinit

from gpu_struct import GPUStruct
from mako.template import Template
from pycuda.compiler import SourceModule

src_template = Template(
"""
struct Dist {
%for s in xrange(ns):
float *dist${s};
%endfor
};

// return linear index based on x,y coordinate
__device__ int get_index(int xcoord, int ycoord)
{
return ycoord + xcoord * ${ny};
};

__global__ void initialize(float *rho, float *ux, float *uy, Dist *ftmp)
{
int idx;
float dens, velx, vely, vv, ev;

for (int y = threadIdx.x + blockIdx.x * blockDim.x;
y < ${ny};
y += blockDim.x * gridDim.x)
{
for (int x = threadIdx.y + blockIdx.y * blockDim.y;
x < ${nx};
x += blockDim.y * gridDim.y)
{
if ((x > 0) && (x < ${nx-1}) && (y > 0) && (y < ${ny-1}))
{
idx = get_index(x,y);
dens = rho[idx]; velx = ux[idx]; vely = uy[idx];
vv = velx*velx + vely*vely;

%for s in xrange(ns):
// s = ${s}; \vec{e}[${s}] = [${ex[s]},${ey[s]}]
float *ftmp${s}_ptr1 = ftmp->dist${s};
ev = ${float(ex[s])}f*velx + ${float(ey[s])}f*vely;
ftmp${s}_ptr1[idx] = ${w[s]}f*dens*(1.0f+3.0f*ev+4.5f*ev*ev-1.5f*vv);
%endfor
}
}
}
}
"""
)

class channelFlow:
# initialize channelFlow
def __init__(self, nx, ny):
self.nx, self.ny = nx, ny

max_threads_per_block = tools.DeviceData().max_threads
self.blocksize = (ny if ny<32 else 32, nx if nx<32 else 32, 1) # threads per block
self.gridsize = (ny/self.blocksize[0], nx/self.blocksize[1], 1) # blocks per grid

self.ns = 9
self.w = np.array([4./9, 1./9, 1./9, 1./9, 1./9, 1./36, 1./36, 1./36, 1./36])
self.ex = np.array([0, 1, -1, 0, 0, 1, -1, -1, 1])
self.ey = np.array([0, 0, 0, 1, -1, 1, 1, -1, -1])

self.ctx = { 'nx': self.nx, 'ny': self.ny, 'ns': self.ns,
'w': self.w, 'ex': self.ex, 'ey': self.ey
}

dtype = np.float32
self.ftmp = np.zeros([self.nx,self.ny,self.ns]).astype(dtype)
self.rho = np.zeros([self.nx,self.ny]).astype(dtype)
self.ux = np.zeros([self.nx,self.ny]).astype(dtype)
self.uy = np.zeros([self.nx,self.ny]).astype(dtype)

self.ftmp_gpu = GPUStruct([
(np.float32,'*dist0', self.ftmp[:,:,0]),
(np.float32,'*dist1', self.ftmp[:,:,1]),
(np.float32,'*dist2', self.ftmp[:,:,2]),
(np.float32,'*dist3', self.ftmp[:,:,3]),
(np.float32,'*dist4', self.ftmp[:,:,4]),
(np.float32,'*dist5', self.ftmp[:,:,5]),
(np.float32,'*dist6', self.ftmp[:,:,6]),
(np.float32,'*dist7', self.ftmp[:,:,7]),
(np.float32,'*dist8', self.ftmp[:,:,8])
])
self.rho_gpu = cuda.mem_alloc(self.rho.nbytes)
self.ux_gpu = cuda.mem_alloc(self.ux.nbytes)
self.uy_gpu = cuda.mem_alloc(self.uy.nbytes)

def run(self):
src = src_template.render(**self.ctx)
code = SourceModule(src)
initialize = code.get_function('initialize')

self.rho[:,:] = 1.
self.ux[:,:] = 0.
self.uy[:,:] = 0.

self.ftmp_gpu.copy_to_gpu()
cuda.memcpy_htod(self.rho_gpu, self.rho)
cuda.memcpy_htod(self.ux_gpu, self.ux)
cuda.memcpy_htod(self.uy_gpu, self.uy)

initialize(
self.rho_gpu, self.ux_gpu, self.uy_gpu,
self.ftmp_gpu.get_ptr(),
block=self.blocksize, grid=self.gridsize
)

self.dens = np.zeros_like(self.rho)
cuda.memcpy_dtoh(self.dens, self.rho_gpu)
print self.dens

if __name__ == "__main__":
sim = channelFlow(64,64); sim.run()

关于python - PyCUDA 正确使用结构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28101037/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com