- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 TensorFlow 中的 kNN 算法计算给定地址的最佳匹配,效果很好,但是当我尝试导出模型并在我们的 Java 环境中使用它时,我陷入了困境从 Java 喂养稀疏的占位符。
这是 python 部分的精简版本,它返回测试名称和最佳引用名称之间的最小距离。到目前为止,这项工作符合预期。当我导出模型并将其导入我的 Java 程序时,它总是返回相同的值(占位符的默认距离)。我假设 python 函数 sparse_from_word_vec(word_vec)
不在模型中,这对我来说完全有意义,但是我应该如何制作这个稀疏张量?我的输入是单个字符串,我需要创建一个拟合稀疏张量(值)来计算距离。我也搜索了一种在 Java 端生成稀疏张量的方法,但没有成功。
import tensorflow as tf
import pandas as pd
d = {'NAME': ['max mustermann',
'erika musterfrau',
'joseph haydn',
'johann sebastian bach',
'wolfgang amadeus mozart']}
df = pd.DataFrame(data=d)
input_name = tf.placeholder_with_default('max musterman',(), name='input_name')
output_dist = tf.placeholder(tf.float32, (), name='output_dist')
test_name = tf.sparse_placeholder(dtype=tf.string)
ref_names = tf.sparse_placeholder(dtype=tf.string)
output_dist = tf.edit_distance(test_name, ref_names, normalize=True)
def sparse_from_word_vec(word_vec):
num_words = len(word_vec)
indices = [[xi, 0, yi] for xi,x in enumerate(word_vec) for yi,y in enumerate(x)]
chars = list(''.join(word_vec))
return(tf.SparseTensorValue(indices, chars, [num_words,1,1]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
t_data_names=tf.constant(df['NAME'])
reference_names = [el.decode('UTF-8') for el in (t_data_names.eval())]
sparse_ref_names = sparse_from_word_vec(reference_names)
sparse_test_name = sparse_from_word_vec([str(input_name.eval().decode('utf-8'))]*5)
feeddict={test_name: sparse_test_name,
ref_names: sparse_ref_names,
}
output_dist = sess.run(output_dist, feed_dict=feeddict)
output_dist = tf.reduce_min(output_dist, 0)
print(output_dist.eval())
tf.saved_model.simple_save(sess,
"model-simple",
inputs={"input_name": input_name},
outputs={"output_dist": output_dist})
这是我的 Java 方法:
public void run(ApplicationArguments args) throws Exception {
log.info("Loading model...");
SavedModelBundle savedModelBundle = SavedModelBundle.load("/model", "serve");
byte[] test_name = "Max Mustermann".toLowerCase().getBytes("UTF-8");
List<Tensor<?>> output = savedModelBundle.session().runner()
.feed("input_name", Tensor.<String>create(test_names))
.fetch("output_dist")
.run();
System.out.printl("Nearest distance: " + output.get(0).floatValue());
}
最佳答案
我能够使您的示例正常工作。在深入研究之前,我对您的 Python 代码有几点评论。
在整个代码中,您将变量 output_dist
用于 3 种不同的值类型。我不是 python 专家,但我认为这是不好的做法。您也永远不会真正使用 input_name
占位符,除非将其导出为输入。最后一个是 tf.saved_model.simple_save
已弃用,您应该使用 tf.saved_model.Builder
相反。
现在是解决方案。
使用命令 jar tvf libtensorflow-x.x.x.jar
查看 libtensorflow
jar 文件(感谢 this 帖子),您可以看到没有有用的绑定(bind)用于创建稀疏张量(也许提出功能请求?)。所以我们必须将输入更改为密集张量,然后向图中添加操作以将其转换为稀疏张量。在您的原始代码中,稀疏转换是在 python 端进行的,这意味着 java 中加载的图形不会有任何操作。
这是新的 python 代码:
import tensorflow as tf
import pandas as pd
def model():
#use dense tensors then convert to sparse for edit_distance
test_name = tf.placeholder(shape=(None, None), dtype=tf.string, name="test_name")
ref_names = tf.placeholder(shape=(None, None), dtype=tf.string, name="ref_names")
#Java Does not play well with the empty character so use "/" instead
test_name_sparse = tf.contrib.layers.dense_to_sparse(test_name, "/")
ref_names_sparse = tf.contrib.layers.dense_to_sparse(ref_names, "/")
output_dist = tf.edit_distance(test_name_sparse, ref_names_sparse, normalize=True)
#output the index to the closest ref name
min_idx = tf.argmin(output_dist)
return test_name, ref_names, min_idx
#Python code to be replicated in Java
def pad_string(s, max_len):
return s + ["/"] * (max_len - len(s))
d = {'NAME': ['joseph haydn',
'max mustermann',
'erika musterfrau',
'johann sebastian bach',
'wolfgang amadeus mozart']}
df = pd.DataFrame(data=d)
input_name = 'max musterman'
#pad dense tensor input
max_len = max([len(n) for n in df['NAME']])
test_input = [list(input_name)]*len(df['NAME'])
#no need to pad, all same length
ref_input = list(map(lambda x: pad_string(x, max_len), [list(n) for n in df['NAME']]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
test_name, ref_names, min_idx = model()
#run a test to make sure the model works
feeddict = {test_name: test_input,
ref_names: ref_input,
}
out = sess.run(min_idx, feed_dict=feeddict)
print("test output:", out)
#save the model with the new Builder API
signature_def_map= {
"predict": tf.saved_model.signature_def_utils.predict_signature_def(
inputs= {"test_name": test_name, "ref_names": ref_names},
outputs= {"min_idx": min_idx})
}
builder = tf.saved_model.Builder("model")
builder.add_meta_graph_and_variables(sess, ["serve"], signature_def_map=signature_def_map)
builder.save()
这里是加载和运行它的java。这里可能有很大的改进空间(java 不是我的主要语言),但它给了你想法。
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.TensorFlow;
import org.tensorflow.SavedModelBundle;
import java.util.ArrayList;
import java.util.List;
import java.util.Arrays;
public class Test {
public static byte[][] makeTensor(String s, int padding) throws Exception
{
int len = s.length();
int extra = padding - len;
byte[][] ret = new byte[len + extra][];
for (int i = 0; i < len; i++) {
String cur = "" + s.charAt(i);
byte[] cur_b = cur.getBytes("UTF-8");
ret[i] = cur_b;
}
for (int i = 0; i < extra; i++) {
byte[] cur = "/".getBytes("UTF-8");
ret[len + i] = cur;
}
return ret;
}
public static byte[][][] makeTensor(List<String> l, int padding) throws Exception
{
byte[][][] ret = new byte[l.size()][][];
for (int i = 0; i < l.size(); i++) {
ret[i] = makeTensor(l.get(i), padding);
}
return ret;
}
public static void main(String[] args) throws Exception {
System.out.println("Loading model...");
SavedModelBundle savedModelBundle = SavedModelBundle.load("model", "serve");
List<String> str_test_name = Arrays.asList("Max Mustermann",
"Max Mustermann",
"Max Mustermann",
"Max Mustermann",
"Max Mustermann");
List<String> names = Arrays.asList("joseph haydn",
"max mustermann",
"erika musterfrau",
"johann sebastian bach",
"wolfgang amadeus mozart");
//get the max length for each array
int pad1 = str_test_name.get(0).length();
int pad2 = 0;
for (String var : names) {
if(var.length() > pad2)
pad2 = var.length();
}
byte[][][] test_name = makeTensor(str_test_name, pad1);
byte[][][] ref_names = makeTensor(names, pad2);
//use a with block so the close method is called
try(Tensor t_test_name = Tensor.<String>create(test_name))
{
try (Tensor t_ref_names = Tensor.<String>create(ref_names))
{
List<Tensor<?>> output = savedModelBundle.session().runner()
.feed("test_name", t_test_name)
.feed("ref_names", t_ref_names)
.fetch("ArgMin")
.run();
System.out.println("Nearest distance: " + output.get(0).longValue());
}
}
}
}
关于java - 如何从 Java 在 TensorFlow 模型中提供稀疏占位符,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55296464/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!