gpt4 book ai didi

python - Keras:重用多个层的权重

转载 作者:行者123 更新时间:2023-11-30 09:59:27 26 4
gpt4 key购买 nike

我正在尝试使用 Keras 功能 API 实现一个神经网络,该网络对多个层使用相同的权重。该代码正在运行,但我不确定我创建的“共享层”是否符合我的要求。示例中的两个隐藏层是否使用相同的权重,或者我是否创建了一层的两个不同实例,它们仅具有共同的结构?如果没有,有办法实现我想要的吗?

# create shared_layer
inputs = Input(shape=(784,))
outputs = layers.Dense(784, activation='relu')(inputs)
shared_layer = Model(inputs=inputs, outputs=outputs)

# create model
visible = Input(shape=(28, 28, 1))
flat = layers.Flatten()(visible)
hidden = shared_layer(flat)
hidden2 = shared_layer(hidden)
output = layers.Dense(10, activation='softmax')(hidden2)

new_model = Model(inputs=visible, outputs=output)

当我查看模型摘要时,我得到以下结果:

Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_4 (InputLayer) (None, 28, 28, 1) 0
__________________________________________________________________________________________________
flatten_2 (Flatten) (None, 784) 0 input_4[0][0]
__________________________________________________________________________________________________
model_3 (Model) (None, 784) 615440 flatten_2[0][0]
model_3[1][0]
__________________________________________________________________________________________________
dense_4 (Dense) (None, 10) 7850 model_3[2][0]
==================================================================================================

最佳答案

它是共享的,但您正在做不必要的事情。

你可以:

shared_layer = layers.Dense(784, activation='relu')

visible = Input(shape=(28, 28, 1))
flat = layers.Flatten()(visible)
hidden = shared_layer(flat)
hidden2 = shared_layer(hidden)
output = layers.Dense(10, activation='softmax')(hidden2)

new_model = Model(inputs=visible, outputs=output)

关于python - Keras:重用多个层的权重,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59583676/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com