- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试实现逻辑回归模型,但不断获得“nan”值作为成本。我用多个数据集尝试过,但给出了相同的结果。不同的来源给出的梯度下降的实现略有不同,所以我不确定这里梯度的实现是否正确。这是完整的代码:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
class LogisticRegression:
def __init__(self, lr=0.001, n_iter=8000):
self.lr = lr
self.n_iter = n_iter
self.weights = None
"""
z is dot product of features and weights, which is then mapped to discrete values, such as between 0 and 1
"""
def sigmoid(self, z):
return 1.0/(1+np.exp(-z))
def predict(self, x_features, weights):
"""Returns 1d array of probabilities that the class label == 1"""
z = np.dot(x_features, weights)
return self.sigmoid(z)
def cost(self, x_features, labels, weights):
"""
Using Mean Absolute Error
Cost = (labels*log(predictions) + (1-labels)*log(1-predictions) ) / len(labels)
"""
observation = len(labels)
predictions = self.predict(x_features, weights)
#take the error when label = 1
class1_cost = -labels*np.log(predictions)
#take the error when label = 0
class2_cost = (1-labels)*np.log(1-predictions)
#take sum of both the cost
cost = class1_cost+class2_cost
#take the average cost
cost = cost.sum()/observation
return cost
def update_weight(self, x_features, labels, weights):
"""
Vectorized Gradient Descent
"""
N = len(x_features)
#get predictions (approximation of y)
predictions = self.predict(x_features, weights)
gradient = np.dot(x_features.T, predictions-labels)
#take the average cost of derivative for each feature
gradient /= N
#multiply gradients by our learning rate
gradient *= self.lr
#subtract from our weights to minimize cost
weights -= gradient
return weights
def give_predictions(self, x_features, weights):
linear_model_prediction = self.predict(x_features, weights)
y_predicted_cls = [1 if i>0.5 else 0 for i in linear_model_prediction]
return y_predicted_cls
def train(self, features, labels):
n_samples, n_features = features.shape
self.weights = np.zeros((n_features,1)) #initialize the weight matrix
cost_history = []
for i in range(self.n_iter):
self.weights = self.update_weight(features, labels, self.weights)
#calculate error for auditing purposes
cost = self.cost(features, labels, self.weights)
cost_history.append(cost)
#Log process
if i%1000 == 0:
print("iter: {}, cost: {}".format(str(i),str(cost)))
return self.weights, cost_history
def generate_data():
bc = datasets.load_breast_cancer()
x_features, labels = bc.data, bc.target
x_train, x_test, y_train, y_test = train_test_split(x_features, labels, test_size=0.2, random_state=1234)
return x_train, x_test, y_train, y_test
x_train, x_test, y_train, y_test = generate_data()
model = LogisticRegression()
model.train(x_train, y_train)
最佳答案
在训练模型之前,我必须对 x_train 应用特征缩放。我使用了 sklearn StandardScaler 库
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
x_train = sc_X.fit_transform(x_train)
关于python-3.x - 逻辑回归成本 = nan,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59850219/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!