gpt4 book ai didi

python - train.py 文件中没有名为 'tensorflow.contrib' 的模块

转载 作者:行者123 更新时间:2023-11-30 09:58:27 25 4
gpt4 key购买 nike

为了进行对象检测而运行 train.py 文件时出现错误。错误是:

错误

Traceback (most recent call last):
File "train.py", line 48, in <module>
from tensorflow.contrib import framework as contrib_framework
ModuleNotFoundError: No module named 'tensorflow.contrib'

注意

我搜索了该错误,发现 Tensorflow 版本 2 不支持“tensorflow.contrib”(仅在版本 1 中支持)。我尝试通过安装 version-1 来解决该问题,但它根本不起作用。正确的解决办法无处可寻。谁能建议一个逐步的解决方案,例如代码中要更改的位置和内容?

火车.py

 # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Training executable for detection models.

This executable is used to train DetectionModels. There are two ways of
configuring the training job:

1) A single pipeline_pb2.TrainEvalPipelineConfig configuration file
can be specified by --pipeline_config_path.

Example usage:
./train \
--logtostderr \
--train_dir=path/to/train_dir \
--pipeline_config_path=pipeline_config.pbtxt

2) Three configuration files can be provided: a model_pb2.DetectionModel
configuration file to define what type of DetectionModel is being trained, an
input_reader_pb2.InputReader file to specify what training data will be used and
a train_pb2.TrainConfig file to configure training parameters.

Example usage:
./train \
--logtostderr \
--train_dir=path/to/train_dir \
--model_config_path=model_config.pbtxt \
--train_config_path=train_config.pbtxt \
--input_config_path=train_input_config.pbtxt
"""

import functools
import json
import os
import tensorflow as tf
from tensorflow.contrib import framework as contrib_framework


from object_detection.builders import dataset_builder
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.legacy import trainer
from object_detection.utils import config_util

tf.logging.set_verbosity(tf.logging.INFO)

flags = tf.app.flags
flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')
flags.DEFINE_integer('task', 0, 'task id')
flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy per worker.')
flags.DEFINE_boolean('clone_on_cpu', False,
'Force clones to be deployed on CPU. Note that even if '
'set to False (allowing ops to run on gpu), some ops may '
'still be run on the CPU if they have no GPU kernel.')
flags.DEFINE_integer('worker_replicas', 1, 'Number of worker+trainer '
'replicas.')
flags.DEFINE_integer('ps_tasks', 0,
'Number of parameter server tasks. If None, does not use '
'a parameter server.')
flags.DEFINE_string('train_dir', '',
'Directory to save the checkpoints and training summaries.')

flags.DEFINE_string('pipeline_config_path', '',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')

flags.DEFINE_string('train_config_path', '',
'Path to a train_pb2.TrainConfig config file.')
flags.DEFINE_string('input_config_path', '',
'Path to an input_reader_pb2.InputReader config file.')
flags.DEFINE_string('model_config_path', '',
'Path to a model_pb2.DetectionModel config file.')

FLAGS = flags.FLAGS


@contrib_framework.deprecated(None, 'Use object_detection/model_main.py.')
def main(_):
assert FLAGS.train_dir, '`train_dir` is missing.'
if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
if FLAGS.task == 0:
tf.gfile.Copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.train_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
train_config_path=FLAGS.train_config_path,
train_input_config_path=FLAGS.input_config_path)
if FLAGS.task == 0:
for name, config in [('model.config', FLAGS.model_config_path),
('train.config', FLAGS.train_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name),
overwrite=True)

model_config = configs['model']
train_config = configs['train_config']
input_config = configs['train_input_config']

model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=True)

def get_next(config):
return dataset_builder.make_initializable_iterator(
dataset_builder.build(config)).get_next()

create_input_dict_fn = functools.partial(get_next, input_config)

env = json.loads(os.environ.get('TF_CONFIG', '{}'))
cluster_data = env.get('cluster', None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
task_data = env.get('task', None) or {'type': 'master', 'index': 0}
task_info = type('TaskSpec', (object,), task_data)

# Parameters for a single worker.
ps_tasks = 0
worker_replicas = 1
worker_job_name = 'lonely_worker'
task = 0
is_chief = True
master = ''

if cluster_data and 'worker' in cluster_data:
# Number of total worker replicas include "worker"s and the "master".
worker_replicas = len(cluster_data['worker']) + 1
if cluster_data and 'ps' in cluster_data:
ps_tasks = len(cluster_data['ps'])

if worker_replicas > 1 and ps_tasks < 1:
raise ValueError('At least 1 ps task is needed for distributed training.')

if worker_replicas >= 1 and ps_tasks > 0:
# Set up distributed training.
server = tf.train.Server(tf.train.ClusterSpec(cluster), protocol='grpc',
job_name=task_info.type,
task_index=task_info.index)
if task_info.type == 'ps':
server.join()
return

worker_job_name = '%s/task:%d' % (task_info.type, task_info.index)
task = task_info.index
is_chief = (task_info.type == 'master')
master = server.target

graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=True)

trainer.train(
create_input_dict_fn,
model_fn,
train_config,
master,
task,
FLAGS.num_clones,
worker_replicas,
FLAGS.clone_on_cpu,
ps_tasks,
worker_job_name,
is_chief,
FLAGS.train_dir,
graph_hook_fn=graph_rewriter_fn)


if __name__ == '__main__':
tf.app.run()

最佳答案

抱歉,TensorFlow.contribtensorflow 2.x 中不存在您必须返回 TensorFlow 1.15.0 或寻找非 contrib 替代方案来为您完成这项工作。

您还可以使用以下方法禁用 tensorflow 2.x 中的版本 2 行为:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

最后,您可以前往tensorflow存储库中的addons来查找一些contrib模块

关于python - train.py 文件中没有名为 'tensorflow.contrib' 的模块,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60046072/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com