gpt4 book ai didi

machine-learning - 通过神经网络从特征中分段进行分类

转载 作者:行者123 更新时间:2023-11-30 09:56:29 27 4
gpt4 key购买 nike

假设我希望预测一个二元类 {0, 1}。其中一个特征 x 是实数。神经网络能否生成一个模型,使得如果 a < x < b(给定 a、b 是实数,使得 a < b),该模型就预测类别 1,否则预测类别 0?

一般来说,如果我们希望 x 在 (a1, b1) union (a2, b2) union (a3, b3) 中预测类别 1 ...其中a1 < b1 < a2 < b2 < a3 < b3 ...,是否可以通过神经网络实现这一点? (使用的神经元/层数没有限制)

编辑:您还可以给出一个数字示例作为说明吗?

最佳答案

您可以学习a < x < b1x2x1网络(输入层有一个神经元,隐藏层有两个神经元,输出层有一个神经元)。隐藏层神经元之一表示 a < x另一个代表x < b 。输出神经元是一个逻辑OR隐藏层神经元的数量。

将此概括为 N(a, b)值,您至少需要 2 * N隐藏层中的神经元。可以使用更少的隐藏层神经元来完成(例如,如果 ab 值中的一些不是唯一的),但实际上,最好使用大于 2 * N 的数字。并让学习过程中不必要的权重趋于零。

您还可以使用多个隐藏层来了解更一般的情况,但这是否比单个隐藏层更好可能取决于(a, b)对是分布式的。

关于machine-learning - 通过神经网络从特征中分段进行分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25976534/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com