gpt4 book ai didi

python - ANN BackProp/梯度检查的问题。

转载 作者:行者123 更新时间:2023-11-30 09:56:18 27 4
gpt4 key购买 nike

刚刚用 python 编写了我的第一个神经网络类。据我所知,一切都应该有效,但其中有一些我似乎找不到的错误(可能正盯着我的脸)。我首先在 MNIST 数据的 10,000 个示例上进行了尝试,然后在尝试复制符号函数时再次尝试,并在尝试复制异或门时再次尝试。每次,无论历元数如何,它总是从所有输出神经元(无论有多少个)产生大致相同值的输出,但成本函数似乎在下降。我正在使用批量梯度下降,所有这些都使用向量完成(每个训练示例没有循环)。

#Neural Network Class

import numpy as np



class NeuralNetwork:

#methods
def __init__(self,layer_shape):
#Useful Network Info
self.__layer_shape = layer_shape
self.__layers = len(layer_shape)

#Initialize Random Weights
self.__weights = []
self.__weight_sizes = []
for i in range(len(layer_shape)-1):
current_weight_size = (layer_shape[i+1],layer_shape[i]+1)
self.__weight_sizes.append(current_weight_size)
self.__weights.append(np.random.normal(loc=0.1,scale=0.1,size=current_weight_size))

def sigmoid(self,z):
return (1/(1+np.exp(-z)))

def sig_prime(self,z):
return np.multiply(self.sigmoid(z),(1-self.sigmoid(z)))


def Feedforward(self,input,Train=False):
self.__input_cases = np.shape(input)[0]

#Empty list to hold the output of every layer.
output_list = []
#Appends the output of the the 1st input layer.
output_list.append(input)

for i in range(self.__layers-1):
if i == 0:
output = self.sigmoid(np.dot(np.concatenate((np.ones((self.__input_cases,1)),input),1),self.__weights[0].T))
output_list.append(output)
else:
output = self.sigmoid(np.dot(np.concatenate((np.ones((self.__input_cases,1)),output),1),self.__weights[i].T))
output_list.append(output)

#Returns the final output if not training.
if Train == False:
return output_list[-1]
#Returns the entire output_list if need for training
else:
return output_list

def CostFunction(self,input,target,error_func=1):
"""Gives the cost of using a particular weight matrix
based off of the input and targeted output"""

#Run the network to get output using current theta matrices.
output = self.Feedforward(input)


#####Allows user to choose Cost Functions.#####

#
#Log Based Error Function
#
if error_func == 0:
error = np.multiply(-target,np.log(output))-np.multiply((1-target),np.log(1-output))
total_error = np.sum(np.sum(error))
#
#Squared Error Cost Function
#
elif error_func == 1:
error = (target - output)**2
total_error = 0.5 * np.sum(np.sum(error))

return total_error

def Weight_Grad(self,input,target,output_list):

#Finds the Error Deltas for Each Layer
#
deltas = []
for i in range(self.__layers - 1):
#Finds Error Delta for the last layer
if i == 0:

error = (target-output_list[-1])

error_delta = -1*np.multiply(error,np.multiply(output_list[-1],(1-output_list[-1])))
deltas.append(error_delta)
#Finds Error Delta for the hidden layers
else:
#Weight matrices have bias values removed
error_delta = np.multiply(np.dot(deltas[-1],self.__weights[-i][:,1:]),output_list[-i-1]*(1-output_list[-i-1]))
deltas.append(error_delta)

#
#Finds the Deltas for each Weight Matrix
#
Weight_Delta_List = []
deltas.reverse()
for i in range(len(self.__weights)):

current_weight_delta = (1/self.__input_cases) * np.dot(deltas[i].T,np.concatenate((np.ones((self.__input_cases,1)),output_list[i]),1))
Weight_Delta_List.append(current_weight_delta)
#print("Weight",i,"Delta:","\n",current_weight_delta)
#print()

#
#Combines all Weight Deltas into a single row vector
#
Weight_Delta_Vector = np.array([[]])
for i in Weight_Delta_List:

Weight_Delta_Vector = np.concatenate((Weight_Delta_Vector,np.reshape(i,(1,-1))),1)
return Weight_Delta_List

def Train(self,input_data,target):
#
#Gradient Checking:
#

#First Get Gradients from first iteration of Back Propagation
output_list = self.Feedforward(input_data,Train=True)
self.__input_cases = np.shape(input_data)[0]

Weight_Delta_List = self.Weight_Grad(input_data,target,output_list)

#Creates List of Gradient Approx arrays set to zero.
grad_approx_list = []
for i in self.__weight_sizes:
current_grad_approx = np.zeros(i)
grad_approx_list.append(current_grad_approx)


#Compute Approx. Gradient for every Weight Change
for W in range(len(self.__weights)):
for index,value in np.ndenumerate(self.__weights[W]):
orig_value = self.__weights[W][index] #Saves the Original Value
print("Orig Value:", orig_value)

#Sets weight to weight +/- epsilon
self.__weights[W][index] = orig_value+.00001
cost_plusE = self.CostFunction(input_data, target)

self.__weights[W][index] = orig_value-.00001
cost_minusE = self.CostFunction(input_data, target)

#Solves for grad approx:
grad_approx = (cost_plusE-cost_minusE)/(2*.00001)
grad_approx_list[W][index] = grad_approx

#Sets Weight Value back to its original value
self.__weights[W][index] = orig_value


#
#Print Gradients from Back Prop. and Grad Approx. side-by-side:
#

print("Back Prop. Grad","\t","Grad. Approx")
print("-"*15,"\t","-"*15)
for W in range(len(self.__weights)):
for index, value in np.ndenumerate(self.__weights[W]):
print(self.__weights[W][index],"\t"*3,grad_approx_list[W][index])

print("\n"*3)
input_ = input("Press Enter to continue:")


#
#Perform Weight Updates for X number of Iterations
#
for i in range(10000):
#Run the network
output_list = self.Feedforward(input_data,Train=True)
self.__input_cases = np.shape(input_data)[0]

Weight_Delta_List = self.Weight_Grad(input_data,target,output_list)


for w in range(len(self.__weights)):
#print(self.__weights[w])
#print(Weight_Delta_List[w])
self.__weights[w] = self.__weights[w] - (.01*Weight_Delta_List[w])


print("Done")`

我什至实现了梯度检查,并且值不同,我想我会尝试用近似值替换反向传播更新。梯度检查值,但这给出了相同的结果,甚至让我怀疑我的梯度检查代码。

以下是异或门训练时产生的一些值:

返回 Prop 梯度:0.0756102610697 0.261814503398 0.0292734023876梯度约:0.05302210631166 0.0416095559674 0.0246847342122成本: 训练前:0.508019225507 训练后 0.50007095103(10000 个 Epoch 后)4 个不同示例的输出(训练后):[0.49317733][0.49294556][0.50489004][0.50465824]

所以我的问题是,我的反向传播或梯度检查是否有任何明显的问题?当人工神经网络出现这些症状时,是否存在任何常见问题(输出大致相同/成本下降)?

最佳答案

我不太擅长阅读Python代码,但是你的异或梯度列表包含3个元素,对应3个权重。我假设,这是单个神经元的两个输入和一个偏差。如果为真,则此类网络无法学习异或(能够学习异或的最小神经网络需要两个隐藏神经元和一个输出单元)。现在,看看前馈函数,如果 np.dot 计算它的名字(即两个向量的点积),并且 sigmoid 是标量,那么这将始终对应于一个神经元的输出,我不明白你如何可以使用此代码向层添加更多神经元。

以下建议对于调试任何新实现的神经网络可能很有用:

1) 不要从 MNIST 甚至 XOR 开始。完美的实现可能无法学习异或,因为它很容易陷入局部最小值,并且您可能会花费大量时间寻找不存在的错误。 AND 函数是一个很好的起点,可以用单个神经元学习该函数

2)通过在几个示例上手动计算结果来检查前向计算传递。用少量的权重就可以很容易地做到这一点。然后尝试用数值梯度来训练它。如果失败,则说明您的数值梯度错误(手动检查)或训练程序错误。 (如果你设置太大的学习率,它可能会失败,但否则训练必须收敛,因为误差表面是凸的)。

3)一旦您可以使用数值梯度对其进行训练,请调试您的分析梯度(检查每个神经元的梯度,然后检查各个权重的梯度)。同样可以手动计算并与您所看到的进行比较。

4) 完成步骤 3 后,如果一切正常,则添加一个隐藏层并使用 AND 函数重复步骤 2 和 3。

5) 在 AND 完成所有操作后,您可以转向 XOR 函数和其他更复杂的任务。

这个过程可能看起来很耗时,但它最终几乎消除了神经网络的工作

关于python - ANN BackProp/梯度检查的问题。,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27640496/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com