- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
使用 "Bitfusion Ubuntu 14 TensorFlow" AMI ,任何使用大张量执行操作的尝试,例如
sess.run(tf.argmax(y, 1), feed_dict={x: use_x})
当 use_x
是 28,000 个 tf.Tensor
float 时,结果为
"Resource Ehausted: OOM”
错误。这使得 AMI 对我来说无法使用。
我是否缺少一个设置来防止这种情况发生?
———————————
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (256): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (512): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1024): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2048): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4096): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8192): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16384): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (32768): Total Chunks: 1, Chunks in use: 0 56.8KiB allocated for chunks. 3.1KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (65536): Total Chunks: 1, Chunks in use: 0 111.2KiB allocated for chunks. 4B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (131072): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (262144): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (524288): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1048576): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2097152): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4194304): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8388608): Total Chunks: 2, Chunks in use: 0 23.73MiB allocated for chunks. 440.3KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16777216): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (33554432): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (67108864): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (134217728): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (268435456): Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:656] Bin for 83.74MiB was 64.00MiB, Chunk State:
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a0000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a0100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a0200 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a0300 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a0400 of size 8192
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a2400 of size 6144
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a3c00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a3d00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a4a00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023a4b00 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023d6b00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7023d6c00 of size 25088000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x703bc3c00 of size 8192
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x703bc5c00 of size 12000000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704737700 of size 6144
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704738f00 of size 60160
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704747a00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704747b00 of size 8192
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704749b00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704749c00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704749d00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704749e00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704749f00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70474a000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70474a100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70474a200 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704758600 of size 60160
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704767100 of size 76288
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704779b00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704779c00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704779d00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704779e00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x704779f00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a200 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a300 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a400 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477a900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477aa00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477b700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70477b800 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7047ad800 of size 12000000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x705f67a00 of size 8192
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x705f69a00 of size 25088000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x707756a00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7082c8600 of size 6144
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7082c9e00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7082c9f00 of size 6144
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7082e7400 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x7082e7500 of size 25088000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x709ad4500 of size 12000000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70a646000 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70a646d00 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70a678d00 of size 87808000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x70fa36500 of size 3703905024
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x70474a300 of size 58112
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x70531f300 of size 12879616
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x707756b00 of size 12000000
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x7082cb700 of size 113920
I tensorflow/core/common_runtime/bfc_allocator.cc:689] Summary of in-use Chunks by size:
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 35 Chunks of size 256 totalling 8.8KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 3328 totalling 9.8KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 6144 totalling 24.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 8192 totalling 32.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 2 Chunks of size 60160 totalling 117.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 76288 totalling 74.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 204800 totalling 600.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 12000000 totalling 34.33MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 25088000 totalling 71.78MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 87808000 totalling 83.74MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 3703905024 totalling 3.45GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] Sum Total of in-use chunks: 3.64GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:698] Stats:
Limit: 3928915968
InUse: 3903864320
MaxInUse: 3903864320
NumAllocs: 418794
MaxAllocSize: 3703905024
W tensorflow/core/common_runtime/bfc_allocator.cc:270] ******************************************************************************xxxxxxxxxxxxxxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 83.74MiB. See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:907] Resource exhausted: OOM when allocating tensor with shape[28000,1,28,28]
Traceback (most recent call last):
File "tf_simple.py", line 173, in <module>
evals = sess.run(tf.argmax(y, 1), feed_dict={x: use_x})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 343, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 567, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 640, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 662, in _do_call
e.code)
tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[28000,1,28,28]
[[Node: 1_conv_layer/kernel_logits/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](as_grid, 1_conv_layer/kernel_weights/W1/read)]]
[[Node: ArgMax/_2316 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_1481_ArgMax", tensor_type=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'1_conv_layer/kernel_logits/Conv2D', defined at:
File "tf_simple.py", line 47, in <module>
final_dropout=final_dropout)
File "/home/ubuntu/mlcode/tf_utils.py", line 150, in make_ff_network
layer_name)
File "/home/ubuntu/mlcode/tf_utils.py", line 86, in _add_conv_layer
kernel_logits = tf.nn.conv2d(input_tensor, weights, strides=[1, 1, 1, 1], padding='SAME') + biases
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 295, in conv2d
data_format=data_format, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 694, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2154, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1154, in __init__
self._traceback = _extract_stack()
最佳答案
问题是 AWS GPU 上的内存限制 ~ 4GB,这不是 AMI 的问题:
Limit: 3928915968
InUse: 3903864320
MaxInUse: 3903864320
NumAllocs: 418794
MaxAllocSize: 3703905024
内存限制为3.928GB,已用内存为3.903GB,分配请求为0.083GB,超出了内存限制。在 AWS 上,您的选择是重写代码,使其可以在 4GB 限制内工作,在该代码部分的仅 CPU 模式下运行并使用系统内存(这当然违背了使用 GPU 的目的),或者等待AWS推出具有更大内存的新GPU实例。
或者,您可以寻找其他云提供商,例如 Nimbix,它提供更多最新的 GPU。
关于amazon-web-services - Bitfusion Ubuntu 14 TensorFlow AMI 因 OOM 错误而失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37284395/
我正在使用 choronos,它建议使用 start/stop 命令开始停止,如下所示 开始计时 停止计时 但是,我正在编写 puppet manifest,它只适用于下面的服务命令。 服务计时开始
来历及作用 services.exe进程程序文件是由微软公司为其发布的Windows操作系统定义的一个系统进程,常见于Windows 2000/XP/Vista/2007等系统中,被描述为服务和控
我一直在尝试使用installutil:installutil /u GSIS.FileMoverService.exe安装Windows服务。 我得到的输出是: Uninstalling assem
如果一个域有多个团队和多个 Web 应用程序,那么注册 Service Worker 来管理整个站点的最佳建议是什么?具有范围的顶级服务 worker /或子域中的多个服务 worker ?由于一个域
我已经在 eclipse 中创建了企业项目。动态web项目和ejb项目对企业项目有借鉴意义。当我运行管理员(企业项目)运行时选择 wildfly 服务器 18。我收到以下错误。谁能告诉我我错过了什么。
我已经使用 apache-cxf-2.7.4 创建了一个 Web 服务。我进入了我的项目中制作的类(class)。我的项目中的库是: math3-commons-3.2.jar XStream-1.4
我在域中的 Virtual Box 中运行集群计算机,默认情况下服务在 Network 服务下运行,服务一直停止,事件日志中出现以下错误。 请从下面的错误日志中查找错误详细信息。任何帮助都会很棒。 L
在我的应用程序中,用户可以在 map 上发布事件。应用程序的入口点是一个无状态的 web api 服务。为了在内部代表用户,我想要一个用户服务。我应该何时使用 Reliable Stateful Ac
当我尝试运行在WIX中创建的安装程序时,出现以下错误消息: “服务'Report Generator Service'(报告生成器服务)无法启动。请验证您是否具有启动系统服务的足够特权”。 我已经在这
尝试使用 cloudformation 创建 ECS 服务(在 Fargate 上)但出现错误: Invalid service in ARN (Service: AmazonECS; Status
我正在编写一个简单的Windows服务,该服务每个月向所有员工发送一封电子邮件。我的问题是,完成后如何停止自我?我是该领域的新手,请帮帮我。非常感谢。 它将部署在服务器上以每月运行。我没有开始做这件事
有谁知道是否有办法在 service worker 中获取此号码或日期: 将我的服务 worker 缓存命名为 cache-1182 会很方便或 cache-20171127171448 我想在安装事
我想开始使用 Azure Service Fabric 技术。 我按照this document工作并安装最新的SDK。安装后,我打开 PowerShell(“以管理员身份运行”)命令行窗口并写入这些
我在使用 whenever gem 时遇到了一些问题。我创建了一个 rake 任务,当我自己启动它时它工作得很好但是当我在日志中收到以下消息时尝试自动执行它: ActiveRecord::Statem
我想在 service fabric 集群中为两个不同的 web 应用程序(webpi/website)共享 http/80 端口,应用程序必须有 2 个不同的主机名: mywebapi.com 和
我创建了一个使用 MongoDB 实现 hibernate OGM 的应用程序。它在 Eclipse 中运行得很好,但是,当我构建一个 fat jar 并尝试运行它时,出现以下错误: Exceptio
我有一个 Selenium Python 测试套件。它开始运行,但几分钟后抛出以下错误: Exception AttributeError: "'Service' object has no attr
我按照此链接的说明进行操作:https://www.thegeekdiary.com/centos-rhel-7-how-to-make-custom-script-to-run-automatica
我在 ubuntu 下的 jboss 上部署了简单的“HelloWorld”Web 服务。 我创建了简单的客户端,但我无法让它工作。每次运行客户端时,我都会收到 NullPointerExceptio
我正在尝试为我的网站使用后台定期同步。我正在使用 localhost 并在 1*1000 毫秒时注册 periodicsync 事件,但这根本不会触发。 我看过这个demo ,但即使我将该网站安装为应
我是一名优秀的程序员,十分优秀!