gpt4 book ai didi

machine-learning - Keras 输出看起来与其他输出不同

转载 作者:行者123 更新时间:2023-11-30 09:54:00 24 4
gpt4 key购买 nike

当我运行以下代码时:

from keras.models import Sequential
from keras.layers import Dense
import numpy
import time

# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset

dataset = numpy.loadtxt("C:/Users/AQader/Desktop/Keraslearn/mammm.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:5]
Y = dataset[:,5]

# create model
model = Sequential()
model.add(Dense(50, input_dim=5, init='uniform', activation='relu'))
model.add(Dense(25, init='uniform', activation='tanh'))
model.add(Dense(15, init='uniform', activation='tanh'))
model.add(Dense(1, init='uniform', activation='sigmoid'))

# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# Fit the model
model.fit(X, Y, nb_epoch=200, batch_size=20, verbose = 0)
time.sleep(0.1)

# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

我最终收到了以下内容。

32/829 [>.............................] - ETA: 0sacc: 84.20%

就是这样。训练半分钟后只显示一条线。查看其他问题后,通常的输出如下所示:

Epoch 1/20
1213/1213 [==============================] - 0s - loss: 0.1760
Epoch 2/20
1213/1213 [==============================] - 0s - loss: 0.1840
Epoch 3/20
1213/1213 [==============================] - 0s - loss: 0.1816
Epoch 4/20
1213/1213 [==============================] - 0s - loss: 0.1915
Epoch 5/20
1213/1213 [==============================] - 0s - loss: 0.1928
Epoch 6/20
1213/1213 [==============================] - 0s - loss: 0.1964
Epoch 7/20
1213/1213 [==============================] - 0s - loss: 0.1948
Epoch 8/20
1213/1213 [==============================] - 0s - loss: 0.1971
Epoch 9/20
1213/1213 [==============================] - 0s - loss: 0.1899
Epoch 10/20
1213/1213 [==============================] - 0s - loss: 0.1957

谁能告诉我这里出了什么问题吗?我是这方面的初学者,但这似乎不正常。请注意“代码”部分没有错误。我的意思是 0sacc 就是显示出来的。我在 Windows 7 64 位机器上的 Anaconda 环境 Python 2.7 中运行它。 8GB RAM 和第五代酷睿 i5。

最佳答案

通过使用 verbose = 0 调用 model.fit,您已经抑制了详细输出。尝试设置 verbose = 1

关于machine-learning - Keras 输出看起来与其他输出不同,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38472050/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com