- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用 HDF5 作为 caffe 的输入之一,hdf5 文件仅包含一些要放入 sigmoidcrossentropyloss 层的权重信息,因此它不包含任何标签
。发生此错误:
I1015 07:08:54.605777 17909 net.cpp:100] Creating Layer weight28
I1015 07:08:54.605797 17909 net.cpp:408] weight28 -> weight28
I1015 07:08:54.605834 17909 hdf5_data_layer.cpp:79] Loading list of HDF5 filenames from: /home/zhangyu/codes/unsupervised/data/weight28.txt
I1015 07:08:54.605926 17909 hdf5_data_layer.cpp:93] Number of HDF5 files: 1
F1015 07:08:54.608682 17909 hdf5.cpp:14] Check failed: H5LTfind_dataset(file_id, dataset_name_) Failed to find HDF5 dataset weight28
*** Check failure stack trace: ***
@ 0x7f17077ec9fd google::LogMessage::Fail()
@ 0x7f17077ee89d google::LogMessage::SendToLog()
@ 0x7f17077ec5ec google::LogMessage::Flush()
@ 0x7f17077ef1be google::LogMessageFatal::~LogMessageFatal()
@ 0x7f1707e4d774 caffe::hdf5_load_nd_dataset_helper<>()
@ 0x7f1707e4bcf0 caffe::hdf5_load_nd_dataset<>()
@ 0x7f1707e8fd78 caffe::HDF5DataLayer<>::LoadHDF5FileData()
@ 0x7f1707e8ebf8 caffe::HDF5DataLayer<>::LayerSetUp()
@ 0x7f1707e283b2 caffe::Net<>::Init()
@ 0x7f1707e2ad85 caffe::Net<>::Net()
@ 0x7f1707e6da5f caffe::Solver<>::InitTrainNet()
@ 0x7f1707e6df7b caffe::Solver<>::Init()
@ 0x7f1707e6e3e8 caffe::Solver<>::Solver()
@ 0x7f1707e865a3 caffe::Creator_SGDSolver<>()
@ 0x4116b1 caffe::SolverRegistry<>::CreateSolver()
@ 0x40ac56 train()
@ 0x406e32 main
@ 0x7f17066adf45 (unknown)
@ 0x4074b6 (unknown)
我searched对于这个问题,我的 hdf5 文件似乎需要一个数据集标签,但事实是我不需要它。我只需要 91250x28x28
的数据集。并将其作为权重输入到损失层。这是我的 h5 文件:
HDF5 weight28.h5
Group '/'
Dataset 'data'
Size: 2555000x28
MaxSize: Infx28
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: 28x28
Filters: none
FillValue: 0.000000
我修改了 sigmiodcrossentropy 层,将其添加为第三个底层:
// modified here
const Dtype* pixelweights = bottom[2]->cpu->data();
Dtype loss = 0;
for (int i = 0; i < count; ++i) {
loss -= pixelweights(i)*(input_data[i] * (target[i] - (input_data[i] >= 0)) -
log(1 + exp(input_data[i] - 2 * input_data[i] * (input_data[i] >= 0))));
}
top[0]->mutable_cpu_data()[0] = loss / num;
}
原型(prototype)文件:
layer {
name: "loss_G"
type: "SigmoidCrossEntropyLoss"
bottom: "global_smR"
bottom: "mask28"
bottom: "weight28" //Added it here
top: "loss_G"
}
我预计 h5 文件中的一批数据将以 bottom[2]
(大小batchsize*28*28)的形式读取到网络。这是问题所在。
任何建议都会被采纳,谢谢!
最佳答案
您的“HDF5Data”
具有名为“weight28”
的top
,但您的h5
文件仅包含数据集“数据”
。 “HDF5Data”
层的“top”
必须与h5
文件中存储的数据集名称相同。如果同一文件中存储了多个数据集,则可以在 h5
文件中拥有多个带有数据集名称的 top
。
关于machine-learning - caffe hdf5 H5LTfind_dataset(file_id, dataset_name_) 找不到HDF5数据集,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40059060/
// Assuming that data are on the CPU initially, and we have a blob. const Dtype* foo; Dtype* bar;
我计划使用 NYU depth v2 数据集实现一个 CNN,它可以从单个图像估计深度。通过本教程,我了解到在 Caffe 上实现处理分类问题的 CNN 很容易。我很好奇 Caffe 是否适合涉及多维
我用图像训练了一个模型。现在想将 fc-6 功能提取到 .npy 文件中。我正在使用 caffe.set_mode_gpu() 运行 caffe.Classifier 并提取特征。 而不是每帧提取和保
我通过 apt install 命令在我的 Ubuntu v18 VM 上安装了 caffe-cpu。我正在努力找出安装目录所在的位置,如果我错了请纠正我,但我相信没有安装目录。我尝试执行的 NN 模
这个问题在这里已经有了答案: how to calculate a net's FLOPs in CNN [closed] (4 个回答) 4年前关闭。 我在tensorflow tutorial看到
似乎this related PR现在已经死了,有没有解决方法可以使用 early stopping在咖啡厅?也许在 Caffe 之上使用 Python? 最佳答案 第一部分很容易手动完成:让我们监控
当我尝试在MacbookPro(El Capitan)上安装最新的caffe时,出现以下错误。怎么了?如何解决? 我在此网站上发现了一些类似的问题,不幸的是显示的修复似乎是ubuntu特有的。 先感谢
average_loss有什么用?有人可以举一个例子或用外行的术语解释吗? 最佳答案 您可以登录 caffe.proto文件。当前版本中的第 151 行对 average_loss 给出了以下注释:
我想先分别处理不同类型的数据,然后将它们融合到一个公共(public)层中。这在 Caffe 中是否可行,如果可以,最好的方法是什么? 我读过可以在同一个 prototxt 文件中定义多个数据层。但是
我正在尝试将几个底部 Blob 合并为一个顶部 Blob ,然后将其馈送到下一层。 这些 Blob 来自不同的卷积/FC层,因此它们的形状不同。 我尝试了 concat 层,但使用轴 0 或 1 时,
包 Digits 需要使用 Caffe 安装目录的位置设置环境变量。 安装Caffe的简单方法是apt-get install caffe-cuda .但是,我无法弄清楚它的安装位置。没有安装在hom
我在 Caffe 中训练过 imagenet。现在我正在尝试为我的模型和 caffe 提供的训练模型计算 ROC/AUC。我有两个问题: 1) ROC/AUC 主要用于二进制类,但我也发现在某些情况下
我正在尝试使我的 Caffe 代码适应 tensorflow。我想知道将我的 train.txt 和 test.txt 转换为适用于 tensorflow 的最佳方法是什么。 在我的 train.tx
有没有办法安装/运行修改后的 Caffe 项目,例如 SegNet或FCN-Berkley-Vision在 Windows 上? 有Microsoft-led project to bring Caf
我想用python设置一个caffe CNN,使用caffe.NetSpec()界面。虽然我看到我们可以把测试网放在 solver.prototxt , 我想写在model.prototxt具有不同的
我有一个预训练的 faster-rcnn caffemodel。我可以使用 net.params[pr][0].data 获取模型的权重。到目前为止,权重是 numpy float32 类型。我想将它
我正在做一个将 keras json 模型转换为 caffe prototxt 的项目 caffe 支持任意填充值 keras(在 tensorflow 之上)支持“相同”和“有效”值 对于 caff
我正在尝试让 CaffeOnSpark 在本地运行,并且我按照 CaffeOnSpark wiki 上的此过程进行操作:https://github.com/yahoo/CaffeOnSpark/wi
我通过caffe使用我自己的数据集训练了网络,现在我想用C++写一个分类代码。我的机器 (linux) 仅适用于 CPU! (我使用 GPU 在 VM 中训练网络)。 当我尝试“包含”特定的 Caff
我知道可以(以编程方式)使用 caffe.Netspec() 设计一个网络,基本上主要目的是编写它的 prototxt。 net = caffe.NetSpec() .. (define) .. wi
我是一名优秀的程序员,十分优秀!