- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个用于深度估计的完全卷积网络,如下所示:(为了简单起见,只有上层和下层):
# input: image and depth_image
layer {
name: "train-data"
type: "Data"
top: "data"
top: "silence_1"
include {
phase: TRAIN
}
transform_param {
#mean_file: "mean_train.binaryproto"
scale: 0.00390625
}
data_param {
source: "/train_lmdb"
batch_size: 4
backend: LMDB
}
}
layer {
name: "train-depth"
type: "Data"
top: "depth"
top: "silence_2"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "train_depth_lmdb"
batch_size: 4
backend: LMDB
}
}
layer {
name: "val-data"
type: "Data"
top: "data"
top: "silence_1"
include {
phase: TEST
}
transform_param {
#mean_file: "mean_val.binaryproto"
scale: 0.00390625
}
data_param {
source: "val_lmdb"
batch_size: 4
backend: LMDB
}
}
layer {
name: "val-depth"
type: "Data"
top: "depth"
top: "silence_2"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "val_depth_lmdb"
batch_size: 4
backend: LMDB
}
}
################## Silence unused labels ##################
layer {
name: "silence_layer_1"
type: "Silence"
bottom: "silence_1"
}
layer {
name: "silence_layer_2"
type: "Silence"
bottom: "silence_2"
}
....
layer {
name: "conv"
type: "Convolution"
bottom: "concat"
top: "conv"
convolution_param {
num_output: 1
kernel_size: 5
pad: 2
stride: 1
engine: CUDNN
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu"
type: "ReLU"
bottom: "conv"
top: "result"
relu_param{
negative_slope: 0.01
engine: CUDNN
}
}
# Error
layer {
name: "accuracy"
type: "Accuracy"
bottom: "result"
bottom: "depth"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "result"
bottom: "depth"
top: "loss"
}
现在我有 3 个问题:
当我训练网络时,准确度层始终为 1。我不明白为什么?
EuclideanLayer 是用于此目的的正确层吗?
在这种情况下是否需要平均值,或者我可以忽略平均值吗?
#Define image transformers
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', mean_array)
transformer.set_transpose('data', (2,0,1))
image = "test.png"
img = caffe.io.load_image(image, False)
img = caffe.io.resize_image( img, (IMAGE_WIDTH, IMAGE_HEIGHT))
net.blobs['data'].data[...] = transformer.preprocess('data', img)
pred = net.forward()
output_blob = pred['result']
最佳答案
"EuclideanLoss"
层非常适合回归。 关于machine-learning - Caffe 损失层、均值和准确度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40462524/
我是pytorch的新手。请问添加'loss.item()'有什么区别?以下2部分代码: for epoch in range(epochs): trainingloss =0 for
我有一个包含 4 列的 MySQL 表,如下所示。 TransactionID | Item | Amount | Date ------------------------------------
我目前正在使用 cocos2d、Box2D 和 Objective-C 为 iPad 和 iPhone 制作游戏。 每次更新都会发生很多事情,很多事情必须解决。 我最近将我的很多代码重构为几个小方法,
我一直在关注 Mixed Precision Guide .因此,我正在设置: keras.mixed_precision.set_global_policy(mixed_precision) 像这样
double lnumber = Math.pow(2, 1000); 打印 1.0715086071862673E301 我尝试过的事情 我尝试使用 BigDecimal 类来扩展这个数字: St
我正在尝试创建一个神经网络来近似函数(正弦、余弦、自定义...),但我在格式上遇到困难,我不想使用输入标签,而是使用输入输出。我该如何更改它? 我正在关注this tutorial import te
我有一个具有 260,000 行和 35 列的“单热编码”(全一和零)数据矩阵。我正在使用 Keras 训练一个简单的神经网络来预测一个连续变量。制作网络的代码如下: model = Sequenti
什么是像素级 softmax 损失?在我的理解中,这只是一个交叉熵损失,但我没有找到公式。有人能帮我吗?最好有pytorch代码。 最佳答案 您可以阅读 here所有相关内容(那里还有一个指向源代码的
我正在训练一个 CNN 架构来使用 PyTorch 解决回归问题,其中我的输出是一个 20 个值的张量。我计划使用 RMSE 作为模型的损失函数,并尝试使用 PyTorch 的 nn.MSELoss(
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我正在使用 Keras 2.0.2 功能 API (Tensorflow 1.0.1) 来实现一个网络,该网络接受多个输入并产生两个输出 a 和 b。我需要使用 cosine_proximity 损失
我正在尝试设置很少层的神经网络,这将解决简单的回归问题,这应该是f(x) = 0,1x 或 f(x) = 10x 所有代码如下所示(数据生成和神经网络) 4 个带有 ReLu 的全连接层 损失函数 R
我正在研究在 PyTorch 中使用带有梯度惩罚的 Wasserstein GAN,但始终得到大的、正的生成器损失,并且随着时间的推移而增加。 我从 Caogang's implementation
我正在尝试在 TensorFlow 中实现最大利润损失。这个想法是我有一些积极的例子,我对一些消极的例子进行了采样,并想计算类似的东西 其中 B 是我的批处理大小,N 是我要使用的负样本数。 我是 t
我正在尝试预测一个连续值(第一次使用神经网络)。我已经标准化了输入数据。我不明白为什么我会收到 loss: nan从第一个纪元开始的输出。 我阅读并尝试了以前对同一问题的回答中的许多建议,但没有一个对
我目前正在学习神经网络,并尝试训练 MLP 以使用 Python 中的反向传播来学习 XOR。该网络有两个隐藏层(使用 Sigmoid 激活)和一个输出层(也是 Sigmoid)。 网络(大约 20,
尝试在 keras 中自定义损失函数(平滑 L1 损失),如下所示 ValueError: Shape must be rank 0 but is rank 5 for 'cond/Switch' (
我试图在 tensorflow 中为门牌号图像创建一个卷积神经网络 http://ufldl.stanford.edu/housenumbers/ 当我运行我的代码时,我在第一步中得到了 nan 的成
我正在尝试使用我在 Keras 示例( https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder
我试图了解 CTC 损失如何用于语音识别以及如何在 Keras 中实现它。 我认为我理解的内容(如果我错了,请纠正我!)总体而言,CTC 损失被添加到经典网络之上,以便逐个元素(对于文本或语音而言逐个
我是一名优秀的程序员,十分优秀!