- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经在训练期间保存了这个模型,但我很难加载它并评估它。
我尝试了一些不同的方法,但无法加载保存的模型并对其进行评估以获取对某些测试样本(图像文件)的预测。
有人可以帮忙吗?正如我所见,这似乎并不那么难,但我想念任何正确的事情。
#!/usr/bin/python
import tensorflow as tf
BATCH_SIZE = 128
NUM_EXAMPLES_PER_EPOCH = 50000
VALIDATION_SIZE = 10000
WIDTH = 128
HEIGHT = 64
CHANNELS = 3
CLASSES = 10
NUMBERS = 4
def inference(inputs):
with tf.variable_scope("conv_pool_1"):
kernel = tf.get_variable(name="kernel",
shape=[5, 5, 3, 48],
initializer=tf.truncated_normal_initializer(stddev=0.05),
dtype=tf.float32)
biases = tf.get_variable(name="biases",
shape=[48],
initializer=tf.constant_initializer(value=0.),
dtype=tf.float32)
conv = tf.nn.conv2d(input=inputs,
filter=kernel,
strides=[1, 1, 1, 1],
padding="SAME")
conv_bias = tf.nn.bias_add(value=conv,
bias=biases,
name="add_biases")
relu = tf.nn.relu(conv_bias)
pool = tf.nn.max_pool(value=relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="SAME",
name="pooling")
with tf.variable_scope("conv_pool_2"):
kernel = tf.get_variable(name="kernel",
shape=[5, 5, 48, 64],
initializer=tf.truncated_normal_initializer(stddev=0.05),
dtype=tf.float32)
biases = tf.get_variable(name="biases",
shape=[64],
initializer=tf.constant_initializer(value=0.),
dtype=tf.float32)
conv = tf.nn.conv2d(input=pool,
filter=kernel,
strides=[1, 1, 1, 1],
padding="SAME")
conv_bias = tf.nn.bias_add(value=conv,
bias=biases,
name="add_biases")
relu = tf.nn.relu(conv_bias)
pool = tf.nn.max_pool(value=relu,
ksize=[1, 2, 1, 1],
strides=[1, 2, 1, 1],
padding="SAME",
name="pooling")
with tf.variable_scope("conv_pool_3"):
kernel = tf.get_variable(name="kernel",
shape=[5, 5, 64, 128],
initializer=tf.truncated_normal_initializer(stddev=0.05),
dtype=tf.float32)
biases = tf.get_variable(name="biases",
shape=[128],
initializer=tf.constant_initializer(value=0.),
dtype=tf.float32)
conv = tf.nn.conv2d(input=pool,
filter=kernel,
strides=[1, 1, 1, 1],
padding="SAME")
conv_bias = tf.nn.bias_add(value=conv,
bias=biases,
name="add_biases")
relu = tf.nn.relu(conv_bias)
pool = tf.nn.max_pool(value=relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="SAME",
name="pooling")
reshape = tf.reshape(pool,
shape=[BATCH_SIZE, -1],
name="reshape")
dims = reshape.get_shape().as_list()[-1]
with tf.variable_scope("fully_conn"):
weights = tf.get_variable(name="weights",
shape=[dims, 2048],
initializer=tf.truncated_normal_initializer(stddev=0.05),
dtype=tf.float32)
biases = tf.get_variable(name="biases",
shape=[2048],
initializer=tf.constant_initializer(value=0.),
dtype=tf.float32)
output = tf.nn.xw_plus_b(x=reshape,
weights=weights,
biases=biases)
conn = tf.nn.relu(output)
with tf.variable_scope("output"):
weights = tf.get_variable(name="weights",
shape=[2048, NUMBERS * CLASSES],
initializer=tf.truncated_normal_initializer(stddev=0.05),
dtype=tf.float32)
biases = tf.get_variable(name="biases",
shape=[NUMBERS * CLASSES],
initializer=tf.constant_initializer(value=0.),
dtype=tf.float32)
logits = tf.nn.xw_plus_b(x=conn,
weights=weights,
biases=biases)
reshape = tf.reshape(logits, shape=[BATCH_SIZE, NUMBERS, CLASSES])
return reshape
def loss(logits, labels):
cross_entropy_per_number = tf.nn.softmax_cross_entropy_with_logits(logits, labels)
cross_entropy = tf.reduce_mean(cross_entropy_per_number)
tf.add_to_collection("loss", cross_entropy)
return cross_entropy
def evaluation(logits, labels):
prediction = tf.argmax(logits, 2)
actual = tf.argmax(labels, 2)
equal = tf.equal(prediction, actual)
# equal = tf.reduce_all(equal, 1)
accuracy = tf.reduce_mean(tf.cast(equal, tf.float32), name="accuracy")
return accuracy
def train(loss, learning_rate=0.00001):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
return train_op
最佳答案
你如何保存它?你有没有尝试过:(用于保存)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my-model')
(用于加载)
sess = tf.Session()
new_saver = tf.train.import_meta_graph('my-model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
官方引用:https://www.tensorflow.org/versions/master/api_docs/python/state_ops/exporting_and_importing_meta_graphs (或者将 URL 中的 master
替换为版本号,例如 r0.12
)。
关于python - 恢复和评估 Tensorflow 模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41984876/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!