- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用递归特征消除和交叉验证 (rfecv) 来找到我拥有的多个特征的最佳准确度得分 (m =154)。
rfecv = RFECV(estimator=logreg, step=1, cv=StratifiedKFold(2),
scoring='accuracy')
rfecv.fit(X, y)
排名 (rfecv.ranking_
) 和相关分数 (rfecv.grid_scores_
) 让我感到困惑。正如您从前 13 个功能(排名前 10 名)中看到的,它们的排名不是基于分数。我知道排名与交叉验证过程中排除该功能的方式和时间有关。那么分数和排名有什么关系呢?我希望排名最高的功能得分最高。
Features/Ranking/Scores
b 1 0.692642743
a 1 0.606166207
f 1 0.568833672
i 1 0.54935204
l 2 0.607564808
j 3 0.613495238
e 4 0.626374391
l 5 0.581064621
d 6 0.611407556
c 7 0.570921354
h 8 0.570921354
k 9 0.576863707
g 10 0.576863707
最佳答案
_grid_scores
不是第 i 个特征的分数,它是估计器在使用第 i 个特征子集进行训练时产生的分数。
要理解这意味着什么,请记住递归特征消除 (RFE) 的工作原理是训练模型、评估模型,然后删除步骤
最不重要的特征,然后重复。
因此,_grid_score[-1]
将是在所有特征上训练的估计器的分数。 _grid_score[-2]
将是删除了 step
特征后估计器的分数。 _grid_score[-3]
将是删除了 2*step
功能后估计器的分数。
因此,网格分数并不反射(reflect)单个特征的评分。事实上,如果步长大于1,则网格分数将少于特征。
关于python - scikit learn(sklearn) 中的 RFECV 功能如何排名?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42491428/
我对 sklearn 中的教程稍作修改 所以X有缺失值。这不适用于原始 svc,因此我尝试创建一个 clf 作为管道——一个 imputer,然后是一个 svc。但是,我仍然收到缺失值错误。将 RFE
我想使用包含的交叉验证 (RFECV) 执行递归特征消除。我的问题是,虽然我对我的数据进行了大量二次采样,但由于我的特征数量 (278),这个过程太慢了,而且可能无法在我为实验分配的时间内得出结论。
在 Sklearn 中有一个实现这个的提议 #15075 , 但与此同时,建议将 eli5 作为解决方案。但是,我不确定我是否以正确的方式使用它。这是我的代码: from sklearn.datase
我是 SKLearn 的新手,对特征选择有疑问。 我正在尝试构建一个 SVM 模型,我的数据具有大约 30 个特征,所有这些特征都大约 10k 个数据点,我目前正在尝试尽可能多地消除无用的特征。我先舍
我是 SKLearn 的新手,对特征选择有疑问。 我正在尝试构建一个 SVM 模型,我的数据具有大约 30 个特征,所有这些特征都大约 10k 个数据点,我目前正在尝试尽可能多地消除无用的特征。我先舍
我正在尝试运行 RFECV 来选择最佳功能,并运行 GridSearchCV 来获得最佳超参数。我的代码如下所示: params = {'estimator__C': [1e-4, 1e4]} est
来自 scikit-learn RFE documentation ,算法依次选择更小的特征集,只保留权重最高的特征。权重低的特征会被丢弃,这个过程会不断重复,直到剩余的特征数量与用户指定的数量相匹配
我正在尝试对 sklearn 中的嵌套 CV 的内循环执行特征选择和网格搜索。虽然我可以将管道作为估算器传递给 RFECV,但当我将 RFECV 作为估算器传递给 GridSearchCV 时,我会收
使用交叉验证 (RFECV) 的递归特征消除不起作用,得到 KeyError: 'weight' .正如我所见,它无法计算系数,因此缺少权重。 我有一个估计器作为 XGBClassifier。 最佳答
我正在使用 scikit-learn 的递归特征排名函数(http://scikit-learn.org/stable/modules/generated/sklearn.feature_select
我很难理解给定的 RFECV example在当前文档中。在情节中,它被写为“nb of misclassifications”,所以我希望它“越低越好”。但在示例图中,最好的已被选为最高的交叉验证分
受此启发:http://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.h
我想编写一个代码,可以在几个处理器和预处理器上进行网格搜索,也可以在不同的功能组合上进行网格搜索。我通过在 gridsearchCV 中使用 RFECV 来完成此操作。然而,这需要很长时间才能运行。因
我试图使用 rfecv 缩小与我的分类器真正相关的特征的数量。这是我写的代码 import sklearn import pandas as p import numpy as np import s
我尝试使用 RFECV 进行特征选择,但每次都会给出不同的结果,交叉验证是否将样本 X 划分为随机 block 或顺序确定性 block ? 此外,为什么 grid_scores_ 和 score(X
我尝试使用 RFECV 进行特征选择,但每次都会给出不同的结果,交叉验证是否将样本 X 划分为随机 block 或顺序确定性 block ? 此外,为什么 grid_scores_ 和 score(X
我使用递归特征消除和交叉验证 (rfecv) 来找到我拥有的多个特征的最佳准确度得分 (m =154)。 rfecv = RFECV(estimator=logreg, step=1, cv=Stra
我对机器学习还很陌生,并试图自己解决问题。我正在使用 SciKit learn 并拥有一个包含大约 20,000 个特征的推文数据集 (n_features=20,000)。到目前为止,我的准确率、召
我正在使用 sklearn 的特征提取 RFECV,它有一个参数“n_jobs”来分配核心使用。 我有一个英特尔 i5-8400 CPU @ 2.80GHz(6 核) 我正在运行 ubuntu 16.
Scikit-learn 库支持递归特征消除(RFE)及其交叉验证版本(RFECV)。 RFECV 对我来说非常有用,它可以选择小特征,但我想知道 RFE 的交叉验证是如何完成的。 RFE 是减少最不
我是一名优秀的程序员,十分优秀!