gpt4 book ai didi

python - 测试准确率较低但 AUC 分数较高的可能原因

转载 作者:行者123 更新时间:2023-11-30 09:51:52 27 4
gpt4 key购买 nike

假设我有一个如下所示的数据集:

word    label_numeric
0 active 0
1 adventurous 0
2 aggressive 0
3 aggressively 0
4 ambitious 0

我使用 word2Vec 训练模型并将每个单词转换为其 300 维的单词向量。这就是现在的样子。

    0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 label
0 0.058594 -0.016235 -0.174805 0.072266 -0.201172 0.073242 -0.074219 -0.149414 0.245117 -0.050049 -0.016357 -0.147461 -0.003311 0.071289 -0.008545 -0.179688 0.001686 -0.009949 -0.036621 0.048096 -0.033447 0.105957 -0.490234 0.249023 -0.199219 -0.025635 -0.248047 0.136719 -0.068848 -0.320312 0.259766 -0.053223 0.154297 -0.050537 0.110840 0.027100 0.000412 -0.133789 0.077148 0.058838 0.230469 -0.033203 -0.179688 -0.125977 -0.166992 -0.110352 -0.365234 -0.330078 -0.021729 -0.076660 0.124023 -0.107910 -0.051758 0.127930 0.192383 0.025024 0.033691 -0.386719 -0.006195 -0.074219 -0.175781 -0.088379 -0.341797 0.145508 -0.051758 0.099609 0.020874 -0.042969 -0.145508 0.090332 0.096191 0.061768 0.209961 0.314453 -0.080078 -0.304688 0.238281 -0.060791 0.146484 0.041504 -0.113281 0.019409 0.328125 0.300781 -0.153320 -0.174805 -0.347656 -0.002167 0.115723 0.104004 0.012817 -0.175781 0.088867 -0.291016 -0.092773 0.144531 -0.006256 -0.066406 -0.145508 -0.182617 -0.144531 0.074707 -0.157227 -0.025513 -0.013977 -0.289062 0.051514 -0.010559 0.121582 0.072754 0.005188 -0.162109 -0.246094 0.002014 -0.072266 -0.026733 0.143555 0.067383 0.398438 -0.212891 0.029663 -0.041748 -0.005157 0.337891 -0.192383 -0.135742 0.226562 -0.033691 -0.188477 0.322266 0.136719 -0.058594 -0.068359 0.136719 0.029175 -0.152344 -0.086426 0.021729 -0.005524 0.115723 0.106445 0.257812 0.000546 -0.161133 -0.046875 -0.049805 -0.058594 -0.110840 0.029907 -0.322266 -0.032715 -0.136719 -0.148438 0.125977 -0.205078 0.027222 -0.005219 -0.188477 0.318359 0.002792 0.155273 0.261719 -0.043457 0.113281 0.142578 0.170898 -0.202148 0.028687 0.239258 0.033203 -0.330078 -0.003647 -0.054199 -0.142578 0.201172 0.053467 -0.249023 -0.180664 0.147461 -0.036865 -0.015259 -0.107910 -0.134766 0.052002 0.109863 0.067871 0.022705 0.058838 -0.189453 -0.093262 -0.043945 -0.009216 0.020386 -0.232422 -0.083008 0.062500 0.016479 0.033936 0.041016 0.049805 0.071289 0.076660 -0.003937 -0.261719 -0.198242 -0.269531 -0.035889 -0.249023 -0.023071 -0.091797 -0.093750 0.192383 -0.376953 0.170898 0.027832 0.023438 0.047363 -0.051270 0.020386 -0.029663 0.128906 0.044434 -0.199219 0.060547 0.138672 0.104980 0.314453 -0.125000 -0.075684 0.088379 0.109863 -0.058594 0.063477 -0.120117 -0.177734 0.017700 0.112793 -0.161133 -0.188477 -0.102051 -0.068848 -0.073730 0.168945 -0.042236 -0.024536 0.128906 -0.066406 -0.020996 0.087891 -0.224609 0.025146 -0.054932 -0.102539 -0.020142 0.123047 -0.171875 0.195312 -0.203125 -0.265625 -0.026367 0.154297 -0.235352 0.092773 0.032715 0.177734 0.063477 -0.168945 0.153320 -0.182617 0.101074 0.074219 0.031250 -0.038086 0.037598 0.035400 -0.150391 -0.108398 -0.071289 -0.080078 0.078613 0.022705 0.148438 -0.098633 -0.032471 0.083984 0.031494 -0.052002 -0.062988 0.316406 -0.105957 0.026733 0.018921 0.026855 -0.176758 -0.088379 0.127930 -0.104980 0.206055 -0.003296 0.184570 0
1 -0.068359 0.076660 -0.224609 0.292969 0.054688 -0.069824 0.028809 0.090332 -0.160156 0.080566 0.289062 -0.005615 0.074219 -0.071289 0.069824 0.032715 -0.036133 0.043457 0.084961 0.224609 -0.001160 0.100098 -0.090820 0.209961 0.101074 0.009949 0.038818 0.151367 0.209961 -0.157227 0.118652 0.247070 0.090332 0.244141 0.125000 -0.253906 0.204102 -0.234375 0.118652 -0.000603 0.253906 -0.146484 -0.077148 0.180664 -0.110840 0.018677 -0.113770 0.159180 0.245117 -0.033447 -0.041748 0.246094 0.018677 0.034180 0.103516 0.087891 0.339844 -0.357422 -0.230469 -0.051758 -0.038574 -0.281250 -0.218750 -0.210938 -0.150391 -0.040283 -0.049072 -0.292969 0.151367 0.143555 0.048340 -0.194336 -0.027344 0.038574 -0.086426 -0.003036 -0.095215 0.062500 -0.098145 0.085938 -0.099609 0.046875 0.039551 0.182617 -0.142578 0.189453 -0.261719 0.030273 0.056152 0.123535 -0.082520 -0.075684 -0.267578 0.014832 0.047852 -0.012451 0.131836 0.240234 -0.107910 -0.316406 0.081055 0.092285 0.014771 0.211914 0.062500 -0.143555 0.412109 -0.210938 -0.064453 -0.193359 0.051025 0.027954 0.026367 -0.109375 0.020752 -0.124512 0.198242 -0.105469 0.250000 -0.071289 -0.065430 -0.139648 -0.032959 0.386719 -0.185547 -0.166992 0.036621 0.001389 -0.090820 0.030396 -0.249023 -0.047363 -0.013245 0.318359 -0.150391 0.048340 -0.037354 0.125000 -0.053711 0.562500 0.005463 -0.067383 -0.345703 0.214844 0.044678 0.170898 -0.218750 0.243164 -0.165039 -0.259766 -0.158203 -0.275391 -0.138672 0.080566 -0.212891 -0.238281 -0.075684 0.015320 0.089844 -0.052490 0.031738 0.339844 0.035400 0.212891 0.127930 -0.033447 0.234375 0.130859 -0.209961 -0.106445 -0.236328 0.047607 -0.153320 -0.075195 0.048340 0.133789 -0.085449 0.122070 -0.187500 -0.172852 -0.137695 -0.392578 -0.028809 -0.177734 -0.131836 -0.141602 0.071777 -0.118652 -0.072754 -0.081543 -0.070312 0.033447 0.124023 -0.088379 -0.130859 0.131836 -0.010437 0.247070 -0.287109 0.077637 0.033203 0.032959 -0.136719 -0.079590 0.051758 -0.045898 -0.131836 -0.326172 -0.202148 -0.033203 -0.176758 0.180664 -0.148438 0.227539 -0.212891 -0.143555 0.273438 0.134766 -0.261719 0.073242 -0.054688 0.027466 0.126953 0.234375 0.097168 0.259766 0.253906 -0.170898 -0.189453 0.239258 -0.173828 0.024536 0.002090 0.101074 0.351562 0.174805 0.162109 -0.146484 -0.103516 -0.037354 0.065430 -0.104004 0.108398 0.296875 0.172852 0.078613 -0.209961 -0.133789 0.037354 -0.125977 0.172852 -0.102539 0.034424 0.095215 0.158203 -0.291016 -0.047852 -0.161133 -0.024414 -0.162109 -0.161133 0.109375 0.003372 0.218750 -0.022339 0.057861 -0.351562 -0.113770 -0.247070 -0.108398 0.097656 0.083008 0.357422 0.347656 0.341797 -0.031006 0.056885 0.114746 0.083008 0.192383 0.335938 0.154297 -0.244141 -0.445312 0.166992 0.396484 -0.132812 0.077148 -0.108398 0.131836 0.063477 0.001221 -0.219727 -0.062988 -0.137695 -0.133789 0.223633 -0.069336 0.163086 0.236328 0
2 -0.003067 0.219727 -0.082520 0.255859 -0.209961 -0.117188 0.109863 0.107422 0.059570 0.007233 0.059082 -0.152344 0.208984 -0.095703 -0.096680 -0.312500 -0.154297 0.024780 0.032471 0.250000 0.090820 0.017944 0.105957 0.133789 -0.122070 0.199219 -0.073730 -0.142578 0.203125 0.047607 0.222656 0.019531 0.026123 -0.138672 0.061768 0.120605 -0.008789 -0.047852 0.269531 -0.182617 0.566406 -0.218750 -0.043457 -0.051270 -0.273438 -0.084961 -0.240234 -0.158203 0.221680 -0.043457 0.308594 0.221680 -0.112305 -0.014343 0.070312 0.174805 -0.090332 -0.384766 0.003281 -0.002808 -0.273438 -0.116211 -0.542969 -0.008057 -0.137695 0.209961 0.231445 -0.008484 -0.092285 0.226562 -0.021851 -0.083984 0.069336 0.277344 -0.217773 0.057129 0.269531 0.218750 0.137695 0.093750 -0.101562 0.281250 0.029785 0.126953 0.066406 -0.019775 -0.287109 0.267578 0.195312 -0.135742 0.012207 0.048828 -0.237305 0.101562 0.206055 -0.091309 -0.085938 0.112305 -0.008423 -0.037109 0.099121 0.018433 -0.108398 0.031982 0.202148 -0.273438 -0.007874 -0.179688 0.025879 -0.046387 -0.172852 -0.202148 -0.086426 -0.028564 -0.033447 -0.047852 0.184570 -0.146484 0.109863 -0.243164 -0.251953 -0.000456 -0.073730 0.199219 -0.248047 -0.265625 0.261719 0.003693 0.092285 -0.111816 -0.118652 -0.320312 0.121582 0.127930 -0.127930 -0.087402 0.229492 0.040527 -0.121094 0.233398 0.052734 0.213867 -0.111328 -0.030884 -0.084961 0.054932 -0.068848 0.133789 -0.121582 -0.235352 -0.031982 0.062500 -0.137695 0.244141 -0.070312 -0.090820 -0.050781 0.041748 0.166992 0.200195 0.016724 0.292969 0.023682 -0.232422 -0.113281 -0.032959 0.038330 -0.357422 0.187500 -0.034180 -0.157227 -0.213867 0.007233 0.136719 0.018433 0.040771 0.089355 0.162109 -0.051514 -0.109863 -0.142578 -0.292969 -0.043945 0.200195 -0.079102 -0.007172 0.131836 0.206055 -0.125977 -0.092285 0.118652 -0.042236 -0.054443 -0.082520 -0.238281 -0.078125 0.052979 0.003601 -0.045166 0.126953 0.064453 0.296875 0.145508 -0.006378 0.015869 -0.070312 0.036377 -0.277344 0.038574 -0.112793 -0.224609 0.171875 -0.184570 0.062500 0.142578 -0.170898 0.189453 -0.067871 -0.239258 -0.110840 -0.043213 0.089844 0.069824 0.012512 0.162109 -0.194336 0.419922 -0.116699 0.170898 0.119141 -0.189453 0.102051 0.055420 0.026245 0.008545 0.052246 -0.088379 -0.236328 -0.041016 -0.125000 -0.051514 0.020020 0.051758 -0.137695 0.206055 -0.029297 -0.106445 -0.039062 0.285156 -0.018677 0.265625 -0.072266 -0.090820 -0.030640 -0.112793 -0.181641 -0.000690 -0.171875 -0.115234 -0.179688 0.114746 0.032227 -0.016235 -0.063477 0.054688 -0.033691 -0.242188 -0.292969 -0.229492 0.067871 0.006378 0.345703 0.024780 0.148438 0.119629 0.121582 0.024780 0.086914 0.066895 0.181641 0.120605 0.234375 0.034180 -0.306641 -0.124512 0.145508 0.025269 -0.138672 0.353516 -0.227539 -0.082520 -0.035645 0.066895 -0.085938 -0.159180 -0.087402 0.186523 0.289062 -0.075195 0.050781 0
In [223]:

我有两个标签 0 和 1。我现在正在使用 300 维词向量作为特征进行二元分类。

以下是训练和测试计数的详细信息:

# Splitting the dataset to train test
from sklearn.cross_validation import train_test_split
train_X, test_X,train_Y,test_Y = train_test_split(jpsa_X_norm,jpsa_Y, test_size=0.30, random_state=42)

print("Total Sample size in Training {}\n".format(train_X.shape[0]))
print("Total Sample size in Test {}".format(test_X.shape[0]))


Total Sample size in Training 151

Total Sample size in Test 65

现在我的训练数据中的标签比例如下:

0    87
1 64
dtype: int64

所以这是一个稍微不平衡的类数据集,比例为 0:1=1:35

我现在为 SVM 和随机森林做一个 GridSearchCV。在这两个算法中,我都输入了

class_weights={1:1.35,0:1}

考虑机器学习中的类别不平衡问题。

这是我的 GridSearchCV 函数:

def grid_search(self):

"""This function does Cross Validation using Grid Search

"""

from sklearn.model_selection import GridSearchCV
self.g_cv = GridSearchCV(estimator=self.estimator,param_grid=self.param_grid,cv=5)
self.g_cv.fit(self.train_X,self.train_Y)

我得到以下 SVM 结果。

The mean train scores are [ 0.57615906  0.57615906  0.57615906  0.57615906  0.93874475  0.57615906
0.57615906 0.57615906 1. 0.94867633 0.57615906 0.57615906
1. 1. 0.950343 0.57615906 0.81777921 0.99668044
1. 1. ]

The mean validation scores are [ 0.57615894 0.57615894 0.57615894 0.57615894 0.87417219 0.57615894
0.57615894 0.57615894 0.8807947 0.8807947 0.57615894 0.57615894
0.86754967 0.87417219 0.88741722 0.57615894 0.70860927 0.90728477
0.87417219 0.87417219]

The score on held out data is: 0.9072847682119205
Parameters for Best Score : {'C': 1, 'kernel': 'linear'}

The accuracy of svm on test data is: 0.8769230769230769

Classification Metrics for svm :
precision recall f1-score support

0 0.87 0.92 0.89 37
1 0.88 0.82 0.85 28

avg / total 0.88 0.88 0.88 65

传递给 SVM 的 GridSearchCV 的超参数值的参数网格为:

grid_svm=[{'kernel': ['rbf'], 'gamma': [1e-1,1e-2,1e-3,1e-4],\
'C': [0.1, 1, 10, 100]},\
{'kernel': ['linear'], 'C': [0.1,1,10,100]}]

我也运行了随机森林:

结果如下:

The mean train scores are [ 0.99009597  1.          0.99833333  1.          0.99833333  1.
0.99834711 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1.
1. ]

The mean validation scores are [ 0.79470199 0.85430464 0.8807947 0.87417219 0.8807947 0.85430464
0.83443709 0.82781457 0.86754967 0.84768212 0.88741722 0.87417219
0.81456954 0.86092715 0.85430464 0.83443709 0.8410596 0.8410596
0.83443709 0.86092715 0.85430464 0.83443709 0.84768212 0.82781457
0.82781457 0.82119205 0.85430464 0.81456954 0.82781457 0.85430464
0.82781457 0.84768212 0.83443709 0.86092715 0.87417219 0.86754967
0.86092715 0.86092715 0.8410596 0.86754967 0.86754967 0.8410596 ]

The score on held out data is: 0.8874172185430463
Parameters for Best Score : {'max_depth': 4, 'n_estimators': 600}

The accuracy of rf on test data is: 0.8307692307692308

Classification Metrics for rf :
precision recall f1-score support

0 0.77 1.00 0.87 37
1 1.00 0.61 0.76 28

avg / total 0.87 0.83 0.82 65

我有 42 个 RF 超参数值组合,如下所示:

grid_rf={'n_estimators': [30,100,250,500,600,900], 'max_depth':[2,4,7,8,9,10,13]}

现在,如果您查看 SVM 和 RF 的输出,您会发现我的训练准确度接近 99%,但测试准确度和验证准确度与训练准确度并不接近。这应该表明过度拟合,但我使用网格搜索和随机森林进行了超参数调整,通常也不会过度拟合。

那么什么可能导致测试/验证准确性如此低呢?

此外,ROC 图的 AUC 非常好,接近 0.96。所以 AUC 很好,但准确性很差,我可以理解类别不平衡问题可能正在发挥作用。但后来我在两者中都使用了类权重参数来处理这个问题。那么我的测试和验证准确性也无法与训练相媲美吗?

enter image description here

这可能是因为测试数据较少(65)吗?

编辑:

这是我如何进行功能标准化的。

# Standardizing the data with zero mean and Unit standard deviation of each feature (columns)
from sklearn import preprocessing

# Getting the standardizing scaler to be used for any new data too
scaler = preprocessing.StandardScaler().fit(train_X_norm)
train_X_std=scaler.transform(train_X_norm)

## Using the same transformation fitted on training data to transform the test data.
test_X_std=scaler.transform(test_X_norm)

我仅在训练数据上拟合标准化器,然后使用它来转换测试数据。不应包含测试数据来计算每个特征的标准差和平均值,因为这将是作弊行为。

但即使在这样做之后,我的测试准确性仍低于非标准化数据的准确性。这很奇怪

最佳答案

这不是过拟合的问题。

你的训练集能涵盖所有情况吗?实际上,如果你使用神经网络来拟合这个分类问题,即使使用随机词嵌入,你也可以获得完美的训练结果。但训练集和测试集(真实情况)之间没有相关性,因此测试结果会像随机分类一样糟糕。

你的情况类似。你随机选择一些样本作为测试样本,剩下的作为训练集。但是您能否确保测试集中的每个样本在训练集中都有相关(相似)的样本?一般来说,答案是否定的,因此测试结果通常低于训练结果。相关性越低,测试结果就越低。

此外,生产中的结果也会低于测试结果,测试集只是对生产环境的模拟。

所以不用担心你的程序,它工作得很好。

关于python - 测试准确率较低但 AUC 分数较高的可能原因,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43669568/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com