- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我刚刚浏览了 Stack Overflow 和其他论坛,但找不到任何对我的问题有帮助的内容。但似乎与this question有关.
我目前有一个经过训练的 Tensorflow 模型(128 个输入和 11 个输出),并按照 Tensorflow 的 MNIST 教程保存了该模型。
它似乎很成功,我现在在这个文件夹中有一个模型,其中包含 3 个文件(.meta、.ckpt.data 和 .index)。但是,我想恢复它并将其用于预测:
#encoding[0] => numpy ndarray (128, ) # anyway a list with only one entry
#unknowndata = np.array(encoding[0])[None]
unknowndata = np.expand_dims(encoding[0], axis=0)
print(unknowndata.shape) # Output (1, 128)
# Restore pre-trained tf model
with tf.Session() as sess:
#saver.restore(sess, "models/model_1.ckpt")
saver = tf.train.import_meta_graph('models/model_1.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint('models/./'))
y = tf.get_collection('final tensor') # tf.nn.softmax(tf.matmul(y2, W3) + b3)
X = tf.get_collection('input') # tf.placeholder(tf.float32, [None, 128])
# W1 = tf.get_collection('vars')[0]
# b1 = tf.get_collection('vars')[1]
# W2 = tf.get_collection('vars')[2]
# b2 = tf.get_collection('vars')[3]
# W3 = tf.get_collection('vars')[4]
# b3 = tf.get_collection('vars')[5]
# y1 = tf.nn.relu(tf.matmul(X, W1) + b1)
# y2 = tf.nn.relu(tf.matmul(y1, W2) + b2)
# yLog = tf.matmul(y2, W3) + b3
# y = tf.nn.softmax(yLog)
prediction = tf.argmax(y, 1)
print(sess.run(prediction, feed_dict={i: d for i,d in zip(X, unknowndata.T)}))
# also had sess.run(prediction, feed_dict={X: unknowndata.T}) and also not transposed, still errors
# Output: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # one should be 1 obviously with a specific percentage
在那里我只会遇到问题......
ValueError: Cannot feed value of shape (1,) for Tensor 'x:0', which has shape '(?, 128)' Altough I print the shape of the 'unknowndata' and it matches the (1, 128). I also tried it with
sess.run(prediction, feed_dict={X: unknownData})) # with transposed etc. but nothing worked for me there I got the other error
TypeError: unhashable type: 'list'
我只想对这个漂亮的 Tensorflow 训练模型进行一些预测。
最佳答案
我发现问题了!首先,我需要恢复所有值(权重和偏差,并分别对它们进行矩阵相乘)。其次,在我的例子中,我需要创建与训练模型中相同的输入:
X = tf.placeholder(tf.float32, [None, 128])
然后调用预测:
sess.run(prediction, feed_dict={X: unknownData})
但是我没有得到任何百分比分布,但我预计这是由于 softmax 函数造成的。有人知道如何访问这些吗?
关于python - Tensorflow 无法为形状为 'x:0' 的张量 '(?, 128)' 提供 shape(1,) 的值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46496213/
您好,我很确定我的问题很愚蠢,但我无法弄清楚它对我的生活有何影响。我有这个家庭作业,它基本上是为了加强我们在类里面学到的关于多态性的知识(顺便说一下,这是 C++)。该程序的基础是一个名为 shape
我是新手,所以需要任何帮助,当我要求一个例子时,我的教授给我了这段代码,我希望有一个工作模型...... from numpy import loadtxt import numpy as np fr
CSS 形状边距 和 外型不适用于我的系统。我正在使用最新版本的 Chrome。我唯一能想到的是我的操作系统是 Windows 7。这应该是一个问题吗? 这是JSFiddle .但是,由于在您的系统上
#tf.shape(tensor)和tensor.shape()的区别 ?
我要求提示以下问题。如何从事件表添加到指定的单元格形状?当我知道名称但不知道如何为...中的每个形状实现论坛时,我可以添加形状 目前我有这样的事情: Sub loop() Dim a As Integ
我在 Excel 中有一个流程设计(使用形状、连接器等)。 我需要的是有一个矩阵,每个形状都有所有的前辈和所有的后继者。 在 VBA 中,为此我正在尝试执行以下操作: - 我列出了所有的连接器(Sha
我正在使用 JavaFX 编写一个教育应用程序,用户可以在其中绘制和操作贝塞尔曲线 Line、QuadCurve 和 CubicCurve。这些曲线应该能够用鼠标拖动。我有两种选择: 1- 使用类 L
我正在尝试绘制 pandas 系列中列的直方图 ('df_plot')。因为我希望 y 轴是百分比(而不是计数),所以我使用权重选项来实现这一点。正如您在下面的堆栈跟踪中发现的那样,权重数组和数据系列
我尝试在 opencv dnn 中实现一个 tensorflow 模型。这是我遇到的错误: OpenCV: Can't create layer "flatten_1/Shape" of type "
我目前正在用 Java 开发一款游戏,我一直在尝试弄清楚如何在 Canvas 上绘制一个形状(例如圆形),在不同的形状(例如正方形)之上,但是只绘制与正方形相交的圆的部分,类似于 Photoshop
import cv2 import numpy as np import sys import time import os cap = cv2.VideoCa
我已经成功创建了 Keras 序列模型并对其进行了一段时间的训练。现在我试图做出一些预测,但即使使用与训练阶段相同的数据,它也会失败。 我收到此错误:{ValueError}检查输入时出错:预期 em
我正在尝试逐行分解程序。 Y 是一个数据矩阵,但我找不到任何关于 .shape[0] 究竟做了什么的具体数据。 for i in range(Y.shape[0]): if Y[i] == -
我正在尝试运行代码,但它给了我这个错误: 行,列,_ = frame.shape AttributeError:“tuple”对象没有属性“shape” 我正在使用OpenCV和python 3.6,
我想在 JavaFx 中的 Pane 上显示形状。我正在使用从空间数据库中选择的 Oracle JGeometry 对象,它有一个方法 createShape() 但它返回 java.awt.Shap
在此代码中: import pandas as pd myj='{"columns":["tablename","alias_tablename","real_tablename","
我正在尝试将 API 结果应用于两列。 下面是我的虚拟数据框。不幸的是,这不是很容易重现,因为我使用的是带有 key 和密码的 API...这只是为了让您了解尺寸。 但我希望也许有人能发现一个明显的问
我的代码是: final String json = getObjectMapper().writeValueAsString(JsonView.with(graph) .onClas
a=np.arange(240).reshape(3,4,20) b=np.arange(12).reshape(3,4) c=np.zeros((3,4),dtype=int) x=np.arang
我正在尝试从张量中提取某些数据,但出现了奇怪的错误。在这里,我将尝试生成错误: a=np.random.randn(5, 10, 5, 5) a[:, [1, 6], np.triu_indices(
我是一名优秀的程序员,十分优秀!