- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 tflearn 和 gym 编写机器学习脚本。
我能够让一个网络在我的 python 脚本中工作,但每当我尝试调用我的函数来构建第二个或第三个网络并使用 model.fit< 对其进行训练时/strong>,我得到一个
tensorflow.python.framework.errors_impl.InvalidArgumentError
编辑;目标应该是建立几个不同的网络以便对它们进行比较。首先,这应该只关注输入数据和训练时期的数量,但最后,我想比较不同的网络大小。此外,我想循环运行它,建立两个以上的网络。
以下代码重现了我的错误:
创建随机操作数组,大小为 pop_size
创建神经网络
如果没有通过,则创建一个新模型,并根据提供的训练数据训练模型
import gym
import random
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
LR = 1e-3
env = gym.make('CartPole-v0')
env.reset()
goal_steps = 500
score_requirement = 1
def initial_population(pop_size):
training_data = []
scores = []
accepted_scores = []
for _ in range(pop_size):
score = 0
game_memory = []
prev_observation = []
for _ in range(goal_steps):
action = random.randrange(0,2)
observation, reward, done, info = env.step(action)
if len(prev_observation) > 0:
game_memory.append([prev_observation, action])
prev_observation = observation
score += reward
if done:
break
if score >= score_requirement:
accepted_scores.append(score)
for data in game_memory:
if data[1] == 1:
output = [0,1]
elif data[1] == 0:
output = [1,0]
training_data.append([data[0], output])
env.reset()
scores.append(score)
return np.array(training_data)
def neural_network_model(input_size):
network = input_data(shape=[None, input_size, 1], name='input')
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=LR,
loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(network, tensorboard_dir='log')
return model
def train_model(training_data, model=False, n_training_epochs=5):
X = np.array([i[0] for i in training_data]).reshape(-1, len(training_data[0][0]), 1)
Y = [i[1] for i in training_data]
if not model:
model = neural_network_model(input_size = len(X[0]))
model.fit({'input':X}, {'targets':Y}, n_epoch=n_training_epochs, snapshot_step=500, show_metric=True)
return model
if __name__ == "__main__":
training_data = initial_population(5)
print("still alive 1")
model = train_model(training_data, n_training_epochs=1)
print("still alive 2")
training_data = initial_population(1)
print("still alive 3")
model = train_model(training_data, n_training_epochs=1)
print("still alive 4")
输出:
C:\Users\username\AppData\Local\Programs\Python\Python36\python.exe C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py
curses is not supported on this machine (please install/reinstall curses for an optimal experience)
still alive 1
2017-11-21 01:03:45.096492: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2017-11-21 01:03:45.355914: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Found device 0 with properties:
name: GeForce GTX 980 Ti major: 5 minor: 2 memoryClockRate(GHz): 1.228
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2017-11-21 01:03:45.356242: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 980 Ti, pci bus id: 0000:01:00.0, compute capability: 5.2)
2017-11-21 01:03:46.394283: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 980 Ti, pci bus id: 0000:01:00.0, compute capability: 5.2)
---------------------------------
Run id: BCIV9S
Log directory: log/
---------------------------------
Training samples: 137
Validation samples: 0
--
Training Step: 1 | time: 0.224s
| Adam | epoch: 001 | loss: 0.00000 - acc: 0.0000 -- iter: 064/137
Training Step: 2 | total loss: 0.62389 | time: 0.234s
| Adam | epoch: 001 | loss: 0.62389 - acc: 0.4500 -- iter: 128/137
Training Step: 3 | total loss: 0.68097 | time: 0.239s
| Adam | epoch: 001 | loss: 0.68097 - acc: 0.3631 -- iter: 137/137
--
still alive 2
still alive 3
2017-11-21 01:03:47.234643: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 980 Ti, pci bus id: 0000:01:00.0, compute capability: 5.2)
2017-11-21 01:03:48.302791: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 980 Ti, pci bus id: 0000:01:00.0, compute capability: 5.2)
---------------------------------
Run id: HHBWWQ
Log directory: log/
---------------------------------
Training samples: 20
Validation samples: 0
--
2017-11-21 01:03:49.928408: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Invalid argument: You must feed a value for placeholder tensor 'input_1/X' with dtype float and shape [?,4,1]
[[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[?,4,1], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
2017-11-21 01:03:49.928684: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Invalid argument: You must feed a value for placeholder tensor 'input_1/X' with dtype float and shape [?,4,1]
[[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[?,4,1], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
Traceback (most recent call last):
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1323, in _do_call
return fn(*args)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1302, in _run_fn
status, run_metadata)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 473, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_1/X' with dtype float and shape [?,4,1]
[[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[?,4,1], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: Dropout_1/cond/Merge/_119 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_274_Dropout_1/cond/Merge", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py", line 69, in <module>
model = train_model(training_data, n_training_epochs=1)
File "C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py", line 58, in train_model
model.fit({'input':X}, {'targets':Y}, n_epoch=n_training_epochs, snapshot_step=500, show_metric=True)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tflearn\models\dnn.py", line 216, in fit
callbacks=callbacks)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tflearn\helpers\trainer.py", line 339, in fit
show_metric)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tflearn\helpers\trainer.py", line 818, in _train
feed_batch)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 889, in run
run_metadata_ptr)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1120, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1317, in _do_run
options, run_metadata)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1336, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_1/X' with dtype float and shape [?,4,1]
[[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[?,4,1], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: Dropout_1/cond/Merge/_119 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_274_Dropout_1/cond/Merge", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Caused by op 'input_1/X', defined at:
File "C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py", line 69, in <module>
model = train_model(training_data, n_training_epochs=1)
File "C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py", line 57, in train_model
model = neural_network_model(input_size = len(X[0]))
File "C:/Users/username/.PyCharm2017.1/config/scratches/scratch.py", line 44, in neural_network_model
network = input_data(shape=[None, input_size, 1], name='input')
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tflearn\layers\core.py", line 81, in input_data
placeholder = tf.placeholder(shape=shape, dtype=dtype, name="X")
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1599, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 3090, in _placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2956, in create_op
op_def=op_def)
File "C:\Users\username\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1470, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_1/X' with dtype float and shape [?,4,1]
[[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[?,4,1], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: Dropout_1/cond/Merge/_119 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_274_Dropout_1/cond/Merge", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Process finished with exit code 1
关键部分似乎是,函数 model.fit 在第二次调用时没有获得正确的数据类型。看起来两个实例可能共享一些变量、数据等,这会搞砸一些事情。
对于常规 tensorflow ,我发现您可能必须为每个新模型执行单独的 session ,但我不知道这是否适用于 tflearn 包。
我正在使用 Windows 10 和 Python 3.6。
最佳答案
实现此功能的一种方法是将 train_model
的第二次调用更改为 train_model(training_data, model, n_training_epochs=1)
,以便重用模型它在第一次调用中创建。这似乎并不完全是您想要的,因为您提到尝试建立第二个网络。
在同一 session 中创建第二个模型似乎确实会导致问题,但您可以创建一个模型并使用 model.save
保存它,然后再次运行程序并将另一个模型保存到不同的文件。
从您的问题来看,尚不完全清楚您想要实现的目标,因此我不确定其中任何一个是否适合您。
编辑:好的,我想我已经弄清楚如何做你想做的事了。如果您没有指定要使用哪个图,则 TensorFlow 会将所有内容放入默认图中。您可以指定您希望事物位于单独的图表中,如下所示:
import tensorflow as tf # This can be at the top of the file if you prefer
graph1 = tf.Graph()
with graph1.as_default():
training_data = initial_population(5)
print("still alive 1")
model = train_model(training_data, n_training_epochs=1)
print("still alive 2")
graph2 = tf.Graph()
with graph2.as_default():
training_data = initial_population(1)
print("still alive 3")
model = train_model(training_data, n_training_epochs=1)
print("still alive 4")
关于python - tflearn 创建多个模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47403336/
可不可以命名为MVVM模型?因为View通过查看模型数据。 View 是否应该只与 ViewModelData 交互?我确实在某处读到正确的 MVVM 模型应该在 ViewModel 而不是 Mode
我正在阅读有关设计模式的文章,虽然作者们都认为观察者模式很酷,但在设计方面,每个人都在谈论 MVC。 我有点困惑,MVC 图不是循环的,代码流具有闭合拓扑不是很自然吗?为什么没有人谈论这种模式: mo
我正在开发一个 Sticky Notes 项目并在 WPF 中做 UI,显然将 MVVM 作为我的架构设计选择。我正在重新考虑我的模型、 View 和 View 模型应该是什么。 我有一个名为 Not
不要混淆:How can I convert List to Hashtable in C#? 我有一个模型列表,我想将它们组织成一个哈希表,以枚举作为键,模型列表(具有枚举的值)作为值。 publi
我只是花了一些时间阅读这些术语(我不经常使用它们,因为我们没有任何 MVC 应用程序,我通常只说“模型”),但我觉得根据上下文,这些意味着不同的东西: 实体 这很简单,它是数据库中的一行: 2) In
我想知道你们中是否有人知道一些很好的教程来解释大型应用程序的 MVVM。我发现关于 MVVM 的每个教程都只是基础知识解释(如何实现模型、 View 模型和 View ),但我对在应用程序页面之间传递
我想realm.delete() 我的 Realm 中除了一个模型之外的所有模型。有什么办法可以不列出所有这些吗? 也许是一种遍历 Realm 中当前存在的所有类型的方法? 最佳答案 您可以从您的 R
我正在尝试使用 alias 指令模拟一个 Eloquent 模型,如下所示: $transporter = \Mockery::mock('alias:' . Transporter::class)
我正在使用 stargazer 创建我的 plm 汇总表。 library(plm) library(pglm) data("Unions", package = "pglm") anb1 <- pl
我读了几篇与 ASP.NET 分层架构相关的文章和问题,但是读得太多后我有点困惑。 UI 层是在 ASP.NET MVC 中开发的,对于数据访问,我在项目中使用 EF。 我想通过一个例子来描述我的问题
我收到此消息错误: Inceptionv3.mlmodel: unable to read document 我下载了最新版本的 xcode。 9.4 版测试版 (9Q1004a) 最佳答案 您没有
(同样,一个 MVC 验证问题。我知道,我知道......) 我想使用 AutoMapper ( http://automapper.codeplex.com/ ) 来验证我的创建 View 中不在我
需要澄清一件事,现在我正在处理一个流程,其中我有两个 View 模型,一个依赖于另一个 View 模型,为了处理这件事,我尝试在我的基本 Activity 中注入(inject)两个 View 模型,
如果 WPF MVVM 应该没有代码,为什么在使用 ICommand 时,是否需要在 Window.xaml.cs 代码中实例化 DataContext 属性?我已经并排观看并关注了 YouTube
当我第一次听说 ASP.NET MVC 时,我认为这意味着应用程序由三个部分组成:模型、 View 和 Controller 。 然后我读到 NerdDinner并学习了存储库和 View 模型的方法
Platform : ubuntu 16.04 Python version: 3.5.2 mmdnn version : 0.2.5 Source framework with version :
我正在学习本教程:https://www.raywenderlich.com/160728/object-oriented-programming-swift ...并尝试对代码进行一些个人调整,看看
我正试图围绕 AngularJS。我很喜欢它,但一个核心概念似乎在逃避我——模型在哪里? 例如,如果我有一个显示多个交易列表的应用程序。一个列表向服务器查询匹配某些条件的分页事务集,另一个列表使用不同
我在为某个应用程序找出最佳方法时遇到了麻烦。我不太习惯取代旧 TLA(三层架构)的新架构,所以这就是我的来源。 在为我的应用程序(POCO 类,对吧??)设计模型和 DAL 时,我有以下疑问: 我的模
我有两个模型:Person 和 Department。每个人可以在一个部门工作。部门可以由多人管理。我不确定如何在 Django 模型中构建这种关系。 这是我不成功的尝试之一 [models.py]:
我是一名优秀的程序员,十分优秀!