- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我改编了 bvlc_reference_caffenet 中的 train_val.prototxt 以在 Caffe 中实现 VGG-16 克隆,并能够使用 batch_size: 6
和 base_lr 使用 GTX 1050 对其进行训练: 0.0648(~ 0.01 * sqrt(256/6)~ 0.01 * sqrt(42))
。但是,我想将输入数据从 [0;255] 缩放到 [0;1],因为该 CNN 的目标平台的精度有限。为了缩放数据,我引入了 scale: 0.00390625
参数(这取自 Caffe LeNet 示例,该示例在目标平台上运行良好)。但使用 scale
参数时,准确度不会增加(> 40000 次迭代),并且训练过程中损失也不会改变。
如何使用 scale
参数训练此 CNN?
train_val.prototxt
name: "ES VGG"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
mirror: true
crop_size: 224
mean_file: "/local/datasets/imagenet/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "/local/datasets/imagenet/ilsvrc12_train_lmdb"
batch_size: 6
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
mirror: false
crop_size: 224
mean_file: "/local/datasets/imagenet/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "/local/datasets/imagenet/ilsvrc12_val_lmdb"
batch_size: 6
backend: LMDB
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.01
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.01
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
inner_product_param {
num_output: 1000
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.01
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
layer {
name: "accuracytop1"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracytop1"
accuracy_param {
top_k: 1
}
include {
phase: TEST
}
}
layer {
name: "accuracytop5"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracytop5"
accuracy_param {
top_k: 5
}
include {
phase: TEST
}
}
求解器.prototxt
net: "models/es_vgg/train_val.prototxt"
test_iter: 1000
test_interval: 1000
base_lr: 0.0648
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 18900000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/es_vgg/es_vgg_train"
solver_mode: GPU
最佳答案
如果您将输入除以 255
,则需要将第一个卷积层 "conv1_1"
的权重乘以 255
以补偿此更改。
看net surgery看看如何做到这一点。
例如(在Python中):
import caffe
net = caffe.Net('models/es_vgg/train_val.prototxt', caffe.TEST) # no .caffemodel weights supplied - weights are randomly init
# scale kernels of first conv layer by 255
net.params['conv1_1'][0].data[...] = 255. * net.params['conv1_1'][0].data
# save the scaled weights
net.save('models/es_vgg/init_scaled.caffemodel')
现在您需要使用'models/es_vgg/init_scaled.caffemodel'
开始训练。
关于machine-learning - 使用尺度参数训练 Caffe CNN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48384931/
简而言之:我想从可变参数模板参数中提取各种选项,但不仅通过标签而且通过那些参数的索引,这些参数是未知的 标签。我喜欢 boost 中的方法(例如 heap 或 lockfree 策略),但想让它与 S
我可以对单元格中的 excel IF 语句提供一些帮助吗? 它在做什么? 对“BaselineAmount”进行了哪些评估? =IF(BaselineAmount, (Variance/Baselin
我正在使用以下方法: public async Task Save(Foo foo,out int param) { ....... MySqlParameter prmparamID
我正在使用 CodeGear RAD Studio IDE。 为了使用命令行参数测试我的应用程序,我多次使用了“运行 -> 参数”菜单中的“参数”字段。 但是每次我给它提供一个新值时,它都无法从“下拉
我已经为信用卡类编写了一些代码,粘贴在下面。我有一个接受上述变量的构造函数,并且正在研究一些方法将这些变量格式化为字符串,以便最终输出将类似于 号码:1234 5678 9012 3456 截止日期:
MySql IN 参数 - 在存储过程中使用时,VarChar IN 参数 val 是否需要单引号? 我已经像平常一样创建了经典 ASP 代码,但我没有更新该列。 我需要引用 VarChar 参数吗?
给出了下面的开始,但似乎不知道如何完成它。本质上,如果我调用 myTest([one, Two, Three], 2); 它应该返回元素 third。必须使用for循环来找到我的解决方案。 funct
将 1113355579999 作为参数传递时,该值在函数内部变为 959050335。 调用(main.c): printf("%d\n", FindCommonDigit(111335557999
这个问题在这里已经有了答案: Is Java "pass-by-reference" or "pass-by-value"? (92 个回答) 关闭9年前。 public class StackOve
我真的很困惑,当像 1 == scanf("%lg", &entry) 交换为 scanf("%lg", &entry) == 1 没有区别。我的实验书上说的是前者,而我觉得后者是可以理解的。 1 =
我正在尝试使用调用 SetupDiGetDeviceRegistryProperty 的函数使用德尔福 7。该调用来自示例函数 SetupEnumAvailableComPorts .它看起来像这样:
我需要在现有项目上实现一些事件的显示。我无法更改数据库结构。 在我的 Controller 中,我(从 ajax 请求)传递了一个时间戳,并且我需要显示之前的 8 个事件。因此,如果时间戳是(转换后)
rails 新手。按照多态关联的教程,我遇到了这个以在create 和destroy 中设置@client。 @client = Client.find(params[:client_id] || p
通过将 VM 参数设置为 -Xmx1024m,我能够通过 Eclipse 运行 Java 程序-Xms256M。现在我想通过 Windows 中的 .bat 文件运行相同的 Java 程序 (jar)
我有一个 Delphi DLL,它在被 Delphi 应用程序调用时工作并导出声明为的方法: Procedure ProduceOutput(request,inputs:widestring; va
浏览完文档和示例后,我还没有弄清楚 schema.yaml 文件中的参数到底用在哪里。 在此处使用 AWS 代码示例:https://github.com/aws-samples/aws-proton
程序参数: procedure get_user_profile ( i_attuid in ras_user.attuid%type, i_data_group in data_g
我有一个字符串作为参数传递给我的存储过程。 dim AgentString as String = " 'test1', 'test2', 'test3' " 我想在 IN 中使用该参数声明。 AND
这个问题已经有答案了: When should I use "this" in a class? (17 个回答) 已关闭 6 年前。 我运行了一些java代码,我看到了一些我不太明白的东西。为什么下
我输入 scroll(0,10,200,10);但是当它运行时,它会传递字符串“xxpos”或“yypos”,我确实在没有撇号的情况下尝试过,但它就是行不通。 scroll = function(xp
我是一名优秀的程序员,十分优秀!