gpt4 book ai didi

python - Conv2D模型的训练卡住了[MNIST数据集]

转载 作者:行者123 更新时间:2023-11-30 09:47:54 25 4
gpt4 key购买 nike

作为一个更大项目的一部分,我正在编写一个小型卷积 2D 模型来训练 MNIST 上的神经网络数据集。

我的(经典)工作流程如下:

  1. 加载数据集并将其转换为np数组
  2. 将数据集拆分为训练集和验证集
  3. reshape (X_train.reshape(X.shape[0], 28, 28, 1)) 和 one_hot_encode (keras.utils.to_categorical(y_train, 10) )
  4. 获取模型
  5. 根据数据进行训练,并保存

我的训练函数定义如下:

def train(model, X_train, y_train, X_val, y_val):
model.fit_generator(
generator=get_next_batch(X_train, y_train),
steps_per_epoch=200,
epochs=EPOCHS,
validation_data=get_next_batch(X_val, y_val),
validation_steps=len(X_val)
)

return model

我使用的生成器:

def get_next_batch(X, y):
# Will contains images and labels
X_batch = np.zeros((BATCH_SIZE, 28, 28, 1))
y_batch = np.zeros((BATCH_SIZE, 10))

while True:
for i in range(0, BATCH_SIZE):
random_index = np.random.randint(len(X))
X_batch[i] = X[random_index]
y_batch[i] = y[random_index]
yield X_batch, y_batch

现在,它正在训练,但在最后一步挂起:

Using TensorFlow backend.
Epoch 1/3
2018-04-18 19:25:08.170609: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
199/200 [============================>.] - ETA: 0s - loss:

如果我不使用任何生成器:

def train(model, X_train, y_train, X_val, y_val):
model.fit(
X_train,
y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
verbose=1,
validation_data=(X_val, y_val)
)

return model

它工作得很好。

显然我的方法get_next_batch做错了什么,但我不明白为什么。

我们非常欢迎任何帮助!

最佳答案

问题是您正在生成器函数中创建一个巨大的验证集。看看这些参数传递到哪里...

    validation_data=get_next_batch(X_val, y_val),
validation_steps=len(X_val)

假设您的 BATCH_SIZE 是 1,000。因此,您将拉取 1,000 个图像,并运行它们 1,000 次。

所以 1,000 x 1,000 = 1,000,000。这就是通过您的网络运行的图像数量,这将需要很长时间。您可以将步骤更改为评论中提到的静态数字,我只是认为解释有助于正确理解它。

关于python - Conv2D模型的训练卡住了[MNIST数据集],我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49905849/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com