- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试根据 keras 模型中的特定输入特征为某些输出变量创建雅可比矩阵。例如,如果我有一个具有 100 个输入特征和 10 个输出变量的模型,并且我想创建输出 2、3 和 4 相对于输出 50-70 的雅可比行列式,我可以像这样创建雅可比行列式:
from keras.models import Model
from keras.layers import Dense, Input
import tensorflow as tf
import keras.backend as K
import numpy as np
input_ = Input(shape=(100,))
output_ = Dense(10)(input_)
model = Model(input_,output_)
x_indices = np.arange(50,70)
y_indices = [2,3,4]
y_list = tf.unstack(model.output[0])
x = np.random.random((1,100))
jacobian_matrix = []
for i in y_indices:
J = tf.gradients(y_list[i], model.input)
jacobian_func = K.function([model.input, K.learning_phase()], J)
jac = jacobian_func([x, False])[0][0,x_indices]
jacobian_matrix.append(jac)
jacobian_matrix = np.array(jacobian_matrix)
但是对于更复杂的模型,这非常慢。我只想根据感兴趣的输入创建上面的雅可比函数。我尝试过这样的事情:
from keras.models import Model
from keras.layers import Dense, Input
import tensorflow as tf
import keras.backend as K
import numpy as np
input_ = Input(shape=(100,))
output_ = Dense(10)(input_)
model = Model(input_,output_)
x_indices = np.arange(50,60)
y_indices = [2,3,4]
y_list = tf.unstack(model.output[0])
x_list = tf.unstack(model.input[0])
x = np.random.random((1,100))
jacobian_matrix = []
for i in y_indices:
jacobian_row = []
for j in x_indices:
J = tf.gradients(y_list[i], x_list[j])
jacobian_func = K.function([model.input, K.learning_phase()], J)
jac = jacobian_func([x, False])[0][0,:]
jacobian_row.append(jac)
jacobian_matrix.append(jacobian_row)
jacobian_matrix = np.array(jacobian_matrix)
并得到错误:
TypeErrorTraceback (most recent call last)
<ipython-input-33-d0d524ad0e40> in <module>()
23 for j in x_indices:
24 J = tf.gradients(y_list[i], x_list[j])
---> 25 jacobian_func = K.function([model.input, K.learning_phase()], J)
26 jac = jacobian_func([x, False])[0][0,:]
27 jacobian_row.append(jac)
/opt/conda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in function(inputs, outputs, updates, **kwargs)
2500 msg = 'Invalid argument "%s" passed to K.function with TensorFlow backend' % key
2501 raise ValueError(msg)
-> 2502 return Function(inputs, outputs, updates=updates, **kwargs)
2503
2504
/opt/conda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __init__(self, inputs, outputs, updates, name, **session_kwargs)
2443 self.inputs = list(inputs)
2444 self.outputs = list(outputs)
-> 2445 with tf.control_dependencies(self.outputs):
2446 updates_ops = []
2447 for update in updates:
/opt/conda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in control_dependencies(control_inputs)
4302 """
4303 if context.in_graph_mode():
-> 4304 return get_default_graph().control_dependencies(control_inputs)
4305 else:
4306 return _NullContextmanager()
/opt/conda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in control_dependencies(self, control_inputs)
4015 if isinstance(c, IndexedSlices):
4016 c = c.op
-> 4017 c = self.as_graph_element(c)
4018 if isinstance(c, Tensor):
4019 c = c.op
/opt/conda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in as_graph_element(self, obj, allow_tensor, allow_operation)
3033
3034 with self._lock:
-> 3035 return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
3036
3037 def _as_graph_element_locked(self, obj, allow_tensor, allow_operation):
/opt/conda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)
3122 # We give up!
3123 raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,
-> 3124 types_str))
3125
3126 def get_operations(self):
TypeError: Can not convert a NoneType into a Tensor or Operation.
有什么想法吗?谢谢。
最佳答案
问题出在行 J = tf.gradients(y_list[i], x_list[j])
上。 x_list[j]
派生自 model.input[0]
,但没有从 x_list[j]
到 model 的定向路径.output[0]
。您需要取消堆叠模型输入,重新堆叠然后运行模型,或者创建相对于整个输入的导数,然后仅选择其中的第 j
行。
第一种方式:
inputs = tf.keras.Inputs((100,))
uninteresting, interesting, more_uninteresting = tf.split(inputs, [50, 10, 40], axis=1)
inputs = tf.concat([uninteresting, interesting, more_uninteresting], axis=1)
model = Model(inputs)
...
J, = tf.gradients(y_list[i], interesting)
第二种方式:
J, = tf.gradients(y_list[i], model.input[0])
J = J[:, 50:60]
话虽如此,对于大量 y
索引来说,这仍然会很慢,所以我强烈鼓励您绝对确定您需要雅可比行列式本身(而不是,对于例如,雅可比向量乘积的结果)。
关于python - 将 tensorflow 梯度应用于特定输入,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50341647/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!