gpt4 book ai didi

python - 隐藏层的训练不会提高准确性

转载 作者:行者123 更新时间:2023-11-30 09:45:55 25 4
gpt4 key购买 nike

我一直在编写这个由 4 层组成的神经网络:

第一个有 2 个神经元,第二个有 2 个神经元,第三个有 2 个神经元,输出一个有 1 个神经元我制作了这个架构来显示我正在尝试重现的内容:

enter image description here

这是代码,您可以尝试运行它(python 3.7):

import numpy as np
import matplotlib.pyplot as plt

#Calculus of the sigmoid
def sigmoid(z):
return 1.0/(1+ np.exp(-z))

#Calculus of the sigmoid derivation
def sigmoid_derivative(y):
return y * (1.0 - y)

#Initialisation of the class (input, output, targets, weights, biais)
class NeuralNetwork:
def __init__(self, x, y):
self.input = x
self.weights1 = np.random.rand(self.input.shape[1],2)
self.weights2 = np.random.rand(2,2)
self.weights3 = np.random.rand(2,2)
self.weights4 = np.random.rand(2,1)
self.y = y
self.output = np.zeros(self.y.shape)
self.bias1 = np.random.rand(1,2)
self.bias2 = np.random.rand(1,2)
self.bias3 = np.random.rand(1,2)
self.bias4 = np.random.rand(1,1)
self.learning_rate = 0.005

#simple feed forward
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1) + self.bias1)
self.layer2 = sigmoid(np.dot(self.layer1, self.weights2) + self.bias2)
self.layer3 = sigmoid(np.dot(self.layer1, self.weights3) + self.bias3)
self.output = sigmoid(np.dot(self.layer2, self.weights4) + self.bias4)

#Back propagation algorithme
def backprop(self):

# application of the chain rule to find derivative of the loss function with respect to weights4, weights3, weights2, weights1 and the associated bias
delta_4 = 2*(self.y - self.output) * sigmoid_derivative(self.output)
d_weights4 = np.dot(self.layer3.T, delta_4)
d_bias4 = delta_4
d_bias4 = d_bias4.mean(axis=0)

delta_3 = np.dot(delta_4, self.weights4.T) * sigmoid_derivative(self.layer3)
d_weights3 = np.dot(self.layer2.T, delta_3)
d_bias3 = delta_3
d_bias3 = d_bias3.mean(axis=0)

delta_2 = np.dot(delta_3, self.weights3.T) * sigmoid_derivative(self.layer2)
d_weights2 = np.dot(self.layer1.T, delta_2)
d_bias2 = delta_2
d_bias2 = d_bias2.mean(axis=0)

delta_1 = np.dot(delta_2, self.weights2.T) * sigmoid_derivative(self.layer1)
d_weights1 = np.dot(self.input.T, delta_1)
d_bias1 = delta_1
d_bias1 = d_bias1.mean(axis=0)

# update the weights with the derivative (slope) of the loss function
self.weights1 += d_weights1 * self.learning_rate
self.weights2 += d_weights2 * self.learning_rate
self.weights3 += d_weights3 * self.learning_rate
self.weights4 += d_weights4 * self.learning_rate
self.bias1 += d_bias1 * self.learning_rate
self.bias2 += d_bias2 * self.learning_rate
self.bias3 += d_bias3 * self.learning_rate
self.bias4 += d_bias4 * self.learning_rate

def cost(self):
return np.mean((self.output - self.y)**2)


if __name__ == "__main__":

#Number of rows per class
row_per_class = 200
#generate rows

#Creating a data set hard to resolve
sick_people = (np.random.randn(row_per_class,2))
row_sick = int(row_per_class/8)
healthy_people = 2*(np.random.randn(row_sick,2)) + np.array([0,10])
healthy_people2 = 2*(np.random.randn(row_sick,2)) + np.array([0,-10])
healthy_people3 = 2*(np.random.randn(row_sick,2)) + np.array([10,0])
healthy_people4 = 2*(np.random.randn(row_sick,2)) + np.array([-10,0])
healthy_people5 = 2*(np.random.randn(row_sick,2)) + np.array([10,10])
healthy_people6 = 2*(np.random.randn(row_sick,2)) + np.array([10,-10])
healthy_people7 = 2*(np.random.randn(row_sick,2)) + np.array([-10,10])
healthy_people8 = 2*(np.random.randn(row_sick,2)) + np.array([-10,-10])
features = np.vstack([sick_people, healthy_people2, healthy_people, healthy_people3, healthy_people4, healthy_people5, healthy_people6, healthy_people7, healthy_people8])
targets = (np.concatenate((np.zeros(row_per_class), np.zeros(row_per_class)+1)))

#To have a good vision of the dataset created just above
plt.scatter(features[:,0], features[:,1], c=targets, cmap = plt.cm.Spectral)
plt.show()
targets = targets[np.newaxis].T

#Initialing the neural network
nn = NeuralNetwork(features,targets)

#Test without training, we can see the current accuracy
nn.feedforward()
predictions = np.around(nn.output)
print ("Accuracy", np.mean(predictions == nn.y))

#Training part
for i in range(30000):
if i % 1000 == 0:
print (nn.cost())
nn.feedforward()
nn.backprop()

# Re Testing of the feedforward after the training
nn.feedforward()
predictions = np.around(nn.output)
print ("Accuracy", np.mean(predictions == nn.y))
predictions = np.around(np.squeeze(np.asarray(nn.output)))

#Show on graph how well the training went
plt.scatter(features[:,0], features[:,1], c=predictions, cmap = plt.cm.Spectral)
plt.show()


# It allows us to have a better vision of the result, we project random point by thousands and
# see the graph

row_per_class = 2000
#generate rows
sick_people = (np.random.randn(row_per_class,2))*4
sick_people2 = (np.random.randn(row_per_class,2))*4
healthy_people = (np.random.randn(row_per_class,2))*4
healthy_people2 = (np.random.randn(row_per_class,2))*4
features = np.vstack([sick_people,sick_people2, healthy_people, healthy_people2])

nn.input = features
nn.feedforward()

predictions = np.around(np.squeeze(np.asarray(nn.output)))
plt.scatter(features[:,0], features[:,1], c=predictions, cmap = plt.cm.Spectral)
plt.show()

看起来我已经尊重反向传播的数学概念,但准确性和成本都不好。看起来是随机的。这是我用来制作此代码的教程(尤其是反向传播):

https://theclevermachine.wordpress.com/2014/09/06/derivation-error-backpropagation-gradient-descent-for-neural-networks/

非常感谢您的帮助!

最佳答案

前馈函数中的矩阵连接错误

#simple feed forward
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1) + self.bias1)
self.layer2 = sigmoid(np.dot(self.layer1, self.weights2) + self.bias2)
self.layer3 = sigmoid(np.dot(self.layer1, self.weights3) + self.bias3)
self.output = sigmoid(np.dot(self.layer2, self.weights4) + self.bias4)

必须是

#simple feed forward
def feedforward(self):
self.layer1 = sigmoid(np.dot(self.input, self.weights1) + self.bias1)
self.layer2 = sigmoid(np.dot(self.layer1, self.weights2) + self.bias2)
self.layer3 = sigmoid(np.dot(self.layer2, self.weights3) + self.bias3)
self.output = sigmoid(np.dot(self.layer3, self.weights4) + self.bias4)

我用这种方式尝试了你的代码,它似乎对我有用这是预测的样子 enter image description here

顺便说一句,这并不是说它有很大的区别,但从理论上讲,您应该使用二元交叉熵成本函数而不是 MSE,因为这里的问题是逻辑回归。 MSE 可能会使其成为非凸的,否则将是凸的。

关于python - 隐藏层的训练不会提高准确性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52643184/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com