gpt4 book ai didi

python - 检查目标 : expected dense_2 to have 2 dimensions, 但获得形状为 (1, 1226, 2) 的数组时出错

转载 作者:行者123 更新时间:2023-11-30 09:45:45 25 4
gpt4 key购买 nike

这是我尝试运行的代码:

y = Df[['label']]

y_train = np.column_stack((y_train['label']))

y_test = np.column_stack((y_test['label']))

data_dim = 18
timesteps = 1
num_classes = 2

model = Sequential()

model.add(LSTM(19, return_sequences=True,
input_shape=(timesteps, data_dim)))
model.add(LSTM(19, return_sequences=True))
model.add(LSTM(19)) # return a single vector of dimension 30
model.add(Dense(1, activation='softmax'))

model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])

model.summary()

model.fit(X_train, y_train, batch_size = 400, epochs = 20, verbose =

accuracy_train = accuracy_score(y_train, model.predict(X_train))
accuracy_test = accuracy_score(y_test, model.predict(X_test))
print('\nTrain Accuracy:{: .2f}%'.format(accuracy_train*100))
print('Test Accuracy:{: .2f}%'.format(accuracy_test*100))

我收到以下错误:

Error when checking target: expected dense_1 to have shape (1,) but got array with shape (1226,)

模型摘要:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_37 (LSTM) (None, 1, 19) 2888
_________________________________________________________________
lstm_38 (LSTM) (None, 1, 19) 2964
_________________________________________________________________
lstm_39 (LSTM) (None, 19) 2964
_________________________________________________________________
dense_13 (Dense) (None, 1) 20
=================================================================
Total params: 8,836
Trainable params: 8,836
Non-trainable params: 0

X_train:

[[[-0.02444971  0.02444971  1.          1.          1.
1. -1. 2. 3. 4.
3. 1. 0. 0.06938705 -0.04329106
0.02458854 0.06025883 0.01439807]]]
[[[ 0.00733477 0.02033006 -1. 1. 1.
1. -1. 0. 1. 2.
1. 0. 0. 0.03837079 -0.00829683
-0.00734757 0.00985466 -0.04543226]]]

y_train:

[[ 1  1 -1 ...  1  1 -1]]

最佳答案

看来你正在做二元分类。因此,有一些问题需要修复:

  1. y_train 应由零和一组成。以下代码会将所有 -1 标签转换为零:

    y_train = (y_train == 1).astype('float32')
  2. 将标签 reshape 为 (n_samples, 1) 形状:

    y_train = y_train.reshape(-1, 1)
  3. 使用'sigmoid'作为最后一层的激活:

    model.add(Dense(1, activation='sigmoid'))

关于python - 检查目标 : expected dense_2 to have 2 dimensions, 但获得形状为 (1, 1226, 2) 的数组时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52908537/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com