gpt4 book ai didi

machine-learning - 如何确定 CartPole 环境何时已解决?

转载 作者:行者123 更新时间:2023-11-30 09:44:07 25 4
gpt4 key购买 nike

我正在经历this教程并看到以下代码:

        # Calculate score to determine when the environment has been solved
scores.append(time)
mean_score = np.mean(scores[-100:])

if episode % 50 == 0:
print('Episode {}\tAverage length (last 100 episodes): {:.2f}'.format(
episode, mean_score))

if mean_score > env.spec.reward_threshold:
print("Solved after {} episodes! Running average is now {}. Last episode ran to {} time steps."
.format(episode, mean_score, time))
break

但是,这对我来说并没有真正意义。如何定义“强化学习环境已解决”?不确定这意味着什么。我想在分类中将其定义为损失为零时是有意义的。在回归中,也许当总 l2 损失小于某个值时?当预期返回(折扣奖励)大于某个值时,也许定义它是有意义的。

但是他们似乎正在计算时间步数?这对我来说没有任何意义。

<小时/>

注意 original tutorial有这个:

def main(episodes):
running_reward = 10
for episode in range(episodes):
state = env.reset() # Reset environment and record the starting state
done = False

for time in range(1000):
action = select_action(state)
# Step through environment using chosen action
state, reward, done, _ = env.step(action.data[0])
# Save reward
policy.reward_episode.append(reward)
if done:
break

# Used to determine when the environment is solved.
running_reward = (running_reward * 0.99) + (time * 0.01)
update_policy()
if episode % 50 == 0:
print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format(episode, time, running_reward))
if running_reward > env.spec.reward_threshold:
print("Solved! Running reward is now {} and the last episode runs to {} time steps!".format(running_reward, time))
break

不确定这是否更有意义......

这只是这个环境/任务的一个特殊怪癖吗?任务一般如何结束?

最佳答案

cartpole情况下使用的时间equals the reward of the episode 。平衡杆的时间越长,得分就越高,在某个最大时间值处停止。

因此,如果最后一集的运行平均值足够接近最大时间,则该集将被视为已解决。

关于machine-learning - 如何确定 CartPole 环境何时已解决?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54737990/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com