gpt4 book ai didi

python-3.x - 属性错误: 'ColumnTransformer' object has no attribute 'shape' in Python Scikit-learn

转载 作者:行者123 更新时间:2023-11-30 09:42:41 25 4
gpt4 key购买 nike

我正在应用类似的编码路径 tutorial对于我自己的项目,使用 ColumnTransformer 一步传输分类变量和数值变量的值。但我被困在它的 X_test = colT.fit(X_test) 上,我不知道预期的输出应该是什么。

这是我的代码,我在 def standardize_values 函数中遇到错误

import pandas as pd
import numpy as np
import ctypes
import re
import pickle
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import Normalizer, OneHotEncoder
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn import metrics
import helper_functions.helper_functions as hf
import data_preparation as data_prep

# Main class
######################################################################
class Machine_Learning_ProjectX(data_prep.DataPreparation_ProjectX):
def __init__(self):
self.pickle_descriptive_stats_demographic = None
self.pickle_descriptive_stats_clinical = None
self.pickle_descriptive_stats_rx = None
self.pickle_descriptive_stats_csu = None
self.df_demographic = None
self.df_clinical = None
self.df_rx = None
self.df_csu = None
self.df_master = None
self.varname_cat_all = ['INDEX_RURAL_CAT', 'INDEX_SEX', 'AIDS_TAG', 'CHF_TAG', 'CKD_TAG', 'CLD_MILD_TAG', 'CLD_SEVERE_TAG',
'COPD_TAG', 'CTD_TAG', 'CVA_TAG', 'DM_MILD_TAG', 'DM_SEVERE_TAG', 'METS_TAG', 'MI_TAG', 'PUD_TAG',
'PVD_TAG', 'DEMENTIA_TAG', 'HEMIPLEGIA_TAG', 'TUMOR_TAG', 'INDEX_DIN_CAT']
self.varname_num_all = ['INDEX_AGE', 'CCI_SCORE', 'PREINDEX1YR_N_DRUGX_FG_MPR', 'PREINDEX1YR_N_DRUGX_SG_MPR', 'PREINDEX1YR_N_DRUGY_TYPICAL_MPR',
'PREINDEX1YR_N_DRUGY_ATYPICAL_MPR', 'POSTINDEX1YR_N_DRUGX_FG_MPR', 'POSTINDEX1YR_N_DRUGX_SG_MPR',
'POSTINDEX1YR_N_DRUGY_TYPICAL_MPR', 'POSTINDEX1YR_N_DRUGY_ATYPICAL_MPR',
'SUMMED_ALLCAUSE_NUM_PRE2YR', 'SUMMED_ALLCAUSE_NUM_POST2YR', 'SUMMED_ALLCAUSE_COST_PRE2YR',
'SUMMED_ALLCAUSE_COST_POST2YR', 'SUMMED_DXTARGET_NUM_PRE2YR', 'SUMMED_DXTARGET_NUM_POST2YR',
'SUMMED_DXTARGET_COST_PRE2YR', 'SUMMED_DXTARGET_COST_POST2YR', 'DAD_ALLCAUSE_NUM_PRE2YR',
'DAD_ALLCAUSE_NUM_POST2YR', 'DAD_ALLCAUSE_COST_PRE2YR', 'DAD_ALLCAUSE_COST_POST2YR',
'DAD_DXTARGET_NUM_PRE2YR', 'DAD_DXTARGET_NUM_POST2YR', 'DAD_DXTARGET_COST_PRE2YR',
'DAD_DXTARGET_COST_POST2YR', 'PC_ALLCAUSE_NUM_PRE2YR', 'PC_ALLCAUSE_NUM_POST2YR',
'PC_ALLCAUSE_COST_PRE2YR', 'PC_ALLCAUSE_COST_POST2YR', 'PC_DXTARGET_NUM_PRE2YR',
'PC_DXTARGET_NUM_POST2YR', 'PC_DXTARGET_COST_PRE2YR', 'PC_DXTARGET_COST_POST2YR',
'NACRS_ALLCAUSE_NUM_PRE2YR', 'NACRS_ALLCAUSE_NUM_POST2YR', 'NACRS_ALLCAUSE_COST_PRE2YR',
'NACRS_ALLCAUSE_COST_POST2YR', 'NACRS_DXTARGET_NUM_PRE2YR', 'NACRS_DXTARGET_NUM_POST2YR',
'NACRS_DXTARGET_COST_PRE2YR', 'NACRS_DXTARGET_COST_POST2YR']
self.varname_num_unused = ['POSTINDEX1YR_N_DRUGX_FG_MPR', 'POSTINDEX1YR_N_DRUGX_SG_MPR', 'POSTINDEX1YR_N_DRUGY_TYPICAL_MPR',
'POSTINDEX1YR_N_DRUGY_ATYPICAL_MPR', 'SUMMED_ALLCAUSE_NUM_POST2YR', 'SUMMED_ALLCAUSE_COST_POST2YR',
'SUMMED_DXTARGET_NUM_POST2YR', 'SUMMED_DXTARGET_COST_POST2YR', 'DAD_ALLCAUSE_NUM_POST2YR',
'DAD_ALLCAUSE_COST_POST2YR', 'DAD_DXTARGET_NUM_POST2YR', 'DAD_DXTARGET_COST_POST2YR', 'PC_ALLCAUSE_NUM_POST2YR',
'PC_ALLCAUSE_COST_POST2YR', 'PC_DXTARGET_NUM_POST2YR', 'PC_DXTARGET_COST_POST2YR', 'NACRS_ALLCAUSE_NUM_POST2YR',
'NACRS_ALLCAUSE_COST_POST2YR', 'NACRS_DXTARGET_NUM_POST2YR', 'NACRS_DXTARGET_COST_POST2YR']
self.varname_id = ['PHN_ENC', 'INDEX_DATE']
varname_label = ['SUMMED_ALLCAUSE_NUM_POST2YR', 'SUMMED_DXTARGET_NUM_POST2YR', 'SUMMED_ALLCAUSE_COST_POST2YR',
'SUMMED_DXTARGET_COST_POST2YR', ]
self.y_label = varname_label[0]
self.varname_import = list(set(self.varname_id+self.varname_cat_all+self.varname_num_all)-set(self.varname_num_unused))+[self.y_label]
self.result_dict_ml = {}

def ml_steps(self):
self.import_references()
self.import_pickle_descriptive_stats_demographic(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DescriptiveStats_Demographic.pickle')
self.import_pickle_descriptive_stats_clinical(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DescriptiveStats_Clinical.pickle')
self.import_pickle_descriptive_stats_rx(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DescriptiveStats_Rx.pickle')
self.import_pickle_descriptive_stats_csu(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DescriptiveStats_CSU.pickle')
self.import_df_demographic(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DF_Demographic_SubjectLevel.csv')
self.import_df_clinical(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DF_Clinical_SubjectLevel.csv')
self.import_df_rx(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DF_Rx_SubjectLevel.csv')
self.import_df_csu(on_switch=True,
import_dir=self.result_dir,
import_filename='JAHIP_V2_SubjectGroup_DF_CSU_SubjectLevel.csv')
self.merge_dfs(on_switch=True)
self.split_into_training_and_test_sets(on_switch=True)
self.generate_new_features(on_switch=False)
self.handle_missing_values(on_switch=True)
self.standardize_values(on_switch=True)
self.ml_pipeline(on_switch=True)

def import_references(self):
super().__init__()
super()._pandas_output_setting()
super().dir_name()
super().file_name()
super().constant_var()
super().import_ref_data()

# Decorators
def on_or_off(func):
def wrapper(self, *args, on_switch=False, **kwargs):
if on_switch:
func(self, *args, on_switch=on_switch, **kwargs)
return wrapper

# Core class functions
@on_or_off
def import_pickle_descriptive_stats_demographic(self, on_switch, import_dir=None, import_filename=None):
with open(import_dir+import_filename, 'rb') as handle:
self.pickle_descriptive_stats_demographic = pickle.load(handle)
@on_or_off
def import_pickle_descriptive_stats_clinical(self, on_switch, import_dir=None, import_filename=None):
with open(import_dir+import_filename, 'rb') as handle:
self.pickle_descriptive_stats_clinical = pickle.load(handle)
@on_or_off
def import_pickle_descriptive_stats_rx(self, on_switch, import_dir=None, import_filename=None):
with open(import_dir+import_filename, 'rb') as handle:
self.pickle_descriptive_stats_rx = pickle.load(handle)
@on_or_off
def import_pickle_descriptive_stats_csu(self, on_switch, import_dir=None, import_filename=None):
with open(import_dir+import_filename, 'rb') as handle:
self.pickle_descriptive_stats_csu = pickle.load(handle)

@on_or_off
def import_df_demographic(self, on_switch, import_dir=None, import_filename=None):
self.df_demographic = pd.read_csv(import_dir+import_filename, dtype={'PHN_ENC':'str'})
@on_or_off
def import_df_clinical(self, on_switch, import_dir=None, import_filename=None):
self.df_clinical = pd.read_csv(import_dir+import_filename, dtype={'PHN_ENC':'str'})
@on_or_off
def import_df_rx(self, on_switch, import_dir=None, import_filename=None):
self.df_rx = pd.read_csv(import_dir+import_filename, dtype={'PHN_ENC':'str'})
@on_or_off
def import_df_csu(self, on_switch, import_dir=None, import_filename=None):
self.df_csu = pd.read_csv(import_dir+import_filename, dtype={'PHN_ENC':'str'})

@on_or_off
def merge_dfs(self, on_switch):
self.df_master = self.df_demographic.copy()
self.df_master = self.df_master.merge(self.df_clinical, on='PHN_ENC', how='outer')
self.df_master = self.df_master.merge(self.df_rx, on='PHN_ENC', how='outer')
self.df_master = self.df_master.merge(self.df_csu, on='PHN_ENC', how='outer')
assert (len(self.df_master)==self.df_master['PHN_ENC'].nunique()), 'Error: Same subject appears on multiple rows.'
# Remove duplicated columns
self.df_master = self.df_master.loc[:,~self.df_master.columns.str.contains('_y', case=True)]
self.df_master.columns = self.df_master.columns.str.replace('_x', '')
self.df_master = self.df_master.loc[:,~self.df_master.columns.duplicated()]
# Remove unused columns
self.df_master = self.df_master.loc[:, ~self.df_master.columns.str.contains('^Unnamed')]
self.df_master = self.df_master.drop(['temp'], axis=1)
# Retain only needed columns
self.df_master = self.df_master[self.varname_import]

@on_or_off
def split_into_training_and_test_sets(self, on_switch):
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.df_master, self.df_master[self.y_label],
test_size=0.3, random_state=888)
self.X_train = self.X_train.drop(['PHN_ENC', 'INDEX_DATE'], axis=1)
self.X_test = self.X_test.drop(['PHN_ENC', 'INDEX_DATE'], axis=1)

@on_or_off
def generate_new_features(self, on_switch):
pass

@on_or_off
def handle_missing_values(self, on_switch):
self.X_train = self.X_train.apply(lambda x:x.fillna(x.value_counts().index[0]))
self.X_test = self.X_test.apply(lambda x:x.fillna(x.value_counts().index[0]))
self.y_train = self.y_train.fillna(0)
self.y_test = self.y_test.fillna(0)

@on_or_off
def standardize_values(self, on_switch):
colT = ColumnTransformer(
[ ('DUMMY_COL', OneHotEncoder(categories=[['URBAN', 'RURAL'],
['M', 'F'],
['AIDS', 'NON-AIDS'],
['CHF', 'NON-CHF'],
['CKD', 'NON-CKD'],
['CLD_MILD', 'NON-CLD_MILD'],
['CLD_SEVERE', 'NON-CLD_SEVERE'],
['COPD', 'NON-COPD'],
['CTD', 'NON-CTD'],
['CVA', 'NON-CVA'],
['DM_MILD', 'NON-DM_MILD'],
['DM_SEVERE', 'NON-DM_SEVERE'],
['METS', "NON-METS"],
['MI', 'NON-MI'],
['PUD', 'NON-PUD'],
['PVD', 'NON-PVD'],
['DEMENTIA', 'NON-DEMENTIA'],
['HEMIPLEGIA', 'NON-HEMIPLEGIA'],
['TUMOR', 'NON-TUMOR'],
['XX', 'YY', 'ZZ'],
]),
self.varname_cat_all),
('NORM_COL', Normalizer(norm='l1'),
list(set(self.varname_num_all)-set(self.varname_num_unused)))
])

print(self.X_train.shape) # (920, 43)
print(self.X_test.shape) # (395, 43)

self.X_train = colT.fit_transform(self.X_train)
self.X_test = colT.fit(self.X_test)

print(self.X_train.shape) # (920, 63)

print(self.X_test) # Printing some weird output "ColumnTransformer..."
print(self.X_test.shape) # AttributeError: 'ColumnTransformer' object has no attribute 'shape'

@on_or_off
def ml_pipeline(self, on_switch):
regressor = LinearRegression()
regressor.fit(self.X_train, self.y_train) # training the algorithm
#y_pred = regressor.predict(self.X_test) # doesn't work

# Main function
######################################################################
def main():
x = Machine_Learning_ProjectX()
x.ml_steps()

if __name__ == '__main__':
main()

# Output below
(920, 43)
(395, 43)
(920, 63)
ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
transformer_weights=None,
transformers=[('DUMMY_COL', OneHotEncoder(categorical_features=None,
categories=[['URBAN', 'RURAL'], ['M', 'F'], ['AIDS', 'NON-AIDS'], ['CHF', 'NON-CHF'], ['CKD', 'NON-CKD'], ['CLD_MILD', 'NON-CLD_MILD'], ['CLD_SEVERE', 'NON-CLD_SEVERE'], ['COPD', 'NON-COPD'], ['CTD', 'NON-CTD'], ['CVA', 'NON..._DXTARGET_NUM_PRE2YR', 'PREINDEX1YR_N_DRUGY_TYPICAL_MPR', 'INDEX_AGE', 'NACRS_ALLCAUSE_NUM_PRE2YR'])])Traceback (most recent call last):
... line 212, in standardize_values
print(self.X_test.shape)
AttributeError: 'ColumnTransformer' object has no attribute 'shape'

最佳答案

<小时/>

The author of the tutorial has made a mistake.

<小时/>
self.X_train = colT.fit_transform(self.X_train)
self.X_test = colT.fit(self.X_test)

这里 self.X_train.fit_transform 的输出方法,所以它是 numpy目的。另一方面,self.X_test.fit 的输出方法,它是一个模型对象,没有 .shape属性!

您需要:

self.X_train = colT.fit_transform(self.X_train)
self.X_test = colT.transform(self.X_test)

P.S:查看文章末尾本教程评论中其他人的说法。

关于python-3.x - 属性错误: 'ColumnTransformer' object has no attribute 'shape' in Python Scikit-learn,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56779111/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com