- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我计划使用情感标签建立一个自学词典情感词。
我能够使用 POS 标签识别情感词,但无法将这些词标记为积极、消极或中性。
例如:“The food was not good”是一个句子,我使用 POS 标签从该句子中提取了“not good”作为情感词。现在我想将其标记为否定并将其添加到我的新词典中以供将来使用。
我做这个项目/任务的偏好是不使用任何预定义的字典/词库/任何预定义的情感分析包。
我正在征求您的意见,以了解如何在不使用任何预定义词典或使用预定义词典的情况下对其进行标记。
目前,我已经探索了 Word embedding,为此跳过了 n-gram 模型。我还使用预定义的字典,通过一些监督学习模型(如 Xgboost、KNN、朴素贝叶斯分类器)来训练模型。我使用了一些无监督模型(例如 k-mean)来通过单词来预测标签。仍然无法得到结果。
如果您知道任何其他方法或一些输入可以应用于上述任何模型来将单词标记为积极、消极或中性,那么请提出建议。
最佳答案
好吧,让我帮您提供基本建议,因为我在大学也做过类似的事情。首先,您必须至少有几个单词(或短语)。你拥有的单词越多,你得到的结果就越不同。为了帮助构建该功能,您的单词必须从大写字母和阅读引用中清除,然后通过分隔符对其进行标记,并使用单词类型(NN、PRO 等)进行标记。
在标记单词或短语时,如果单词或短语有正面、负面或其他含义,则必须自行定义。 Python NLTK 是基于单词种类标记英语单词的最佳库,但您必须定义情感。因此,您可以将数据源的特征存储在类似这样的数组中:
{"anarchy","VB","+"}
where the format is
{<word>,
<type_of_word>,
<sentiment_class>}
如果您还有其他单词,只需对您的训练数据集执行分类方法并将结果存储到您的数据集中。但如果分类词的准确率很高,这种技术就会失败。
但我的注意是,要小心具有多种情绪的单词(看起来像是积极的,但实际上根据其句子上下文具有消极情绪,或相反)。所以最好的建议是,让你的模型标记句子中单词的情感,而不是当单词单独存在时,而是根据它在句子中的位置来标记。这是“The anarchy peoples”这样的短语的特征示例(请注意,清理后,所有单词都转换为小型大写字母)
{"anarchy","VB","the","PP","peoples","NNP","0,001","+"}
where the format is
{<word>,
<type_of_word>,
<word_before your word>,
<type_of_word_before>,
<word_after>,
<kind_of_word_after>,
<probability_of_word_presence>,
<sentiment_class>}
我建议你读一些related researches在执行此操作之前先了解一下情感分析。
希望对你有帮助
关于machine-learning - 创建自学习情感词典,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57178799/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!