- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在研究 Kaggle 上托管的房价问题。在构建模型时,我认为在测试集上重用我在训练数据集上使用的一些代码是有意义的,因此我将执行相互操作的代码放入一个函数定义中。在此函数中,我处理缺失值并使用其返回来执行单热编码并将其用于随机森林回归。但是,它引发以下错误:
Traceback (most recent call last):
File "C:/Users/security/Downloads/AP/Boston-Kaggle/Model.py", line 56, in <module>
sel.fit(x_train, y_train)
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\sklearn\feature_selection\from_model.py", line 196, in fit
self.estimator_.fit(X, y, **fit_params)
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\sklearn\ensemble\forest.py", line 249, in fit
X = check_array(X, accept_sparse="csc", dtype=DTYPE)
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\sklearn\utils\validation.py", line 542, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\sklearn\utils\validation.py", line 56, in _assert_all_finite
raise ValueError(msg_err.format(type_err, X.dtype))
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
当我使用相同的代码而不将其组织成函数时,没有遇到这个问题。 def feature_selection_and_engineering(df)
是有问题的函数。以下是我的全部代码:
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
train = pd.read_csv("https://raw.githubusercontent.com/oo92/Boston-Kaggle/master/train.csv")
test = pd.read_csv("https://raw.githubusercontent.com/oo92/Boston-Kaggle/master/test.csv")
def feature_selection_and_engineering(df):
# Creating a series of how many NaN's are in each column
nan_counts = df.isna().sum()
# Creating a template list
nan_columns = []
# Iterating over the series and if the value is more than 0 (i.e there are some NaN's present)
for i in range(0, len(nan_counts)):
if nan_counts[i] > 0:
nan_columns.append(df.columns[i])
# Iterating through all the columns which are known to have NaN's
for i in nan_columns:
if df[nan_columns][i].dtypes == 'float64':
df[i] = df[i].fillna(df[i].mean())
elif df[nan_columns][i].dtypes == 'object':
df[i] = df[i].fillna('XX')
# Creating a template list
categorical_columns = []
# Iterating across all the columns,
# checking if they're of the object datatype and if they are, appending them to the categorical list
for i in range(0, len(df.dtypes)):
if df.dtypes[i] == 'object':
categorical_columns.append(df.columns[i])
return categorical_columns
# take one-hot encoding
OHE_sdf = pd.get_dummies(feature_selection_and_engineering(train))
# drop the old categorical column from original df
train.drop(columns = feature_selection_and_engineering(train), axis = 1, inplace = True)
# attach one-hot encoded columns to original data frame
train = pd.concat([train, OHE_sdf], axis = 1, ignore_index = False)
# Dividing the training dataset into train/test sets with the test size being 20% of the overall dataset.
x_train, x_test, y_train, y_test = train_test_split(train, train['SalePrice'], test_size = 0.2, random_state = 42)
randomForestRegressor = RandomForestRegressor(n_estimators=1000)
# Invoking the Random Forest Classifier with a 1.25x the mean threshold to select correlating features
sel = SelectFromModel(RandomForestClassifier(n_estimators = 100), threshold = '1.25*mean')
sel.fit(x_train, y_train)
selected = sel.get_support()
# linearRegression.fit(x_train, y_train)
randomForestRegressor.fit(x_train, y_train)
# Assigning the accuracy of the model to the variable "accuracy"
accuracy = randomForestRegressor.score(x_train, y_train)
# Predicting for the data in the test set
predictions = randomForestRegressor.predict(feature_selection_and_engineering(test))
# Writing the predictions to a new CSV file
submission = pd.DataFrame({'Id': test['PassengerId'], 'SalePrice': predictions})
filename = 'Boston-Submission.csv'
submission.to_csv(filename, index=False)
print(accuracy*100, "%")
新错误:
Traceback (most recent call last):
File "/home/onur/Documents/Boston-Kaggle/Model.py", line 76, in <module>
x_train, encoder = feature_selection_and_engineering(x_train)
File "/home/onur/Documents/Boston-Kaggle/Model.py", line 57, in feature_selection_and_engineering
encoder = train_one_hot_encoder(df, categorical_columns)
File "/home/onur/Documents/Boston-Kaggle/Model.py", line 30, in train_one_hot_encoder
return enc.fit(categorical_df)
File "/opt/anaconda/envs/lib/python3.7/site-packages/sklearn/preprocessing/_encoders.py", line 493, in fit
self._fit(X, handle_unknown=self.handle_unknown)
File "/opt/anaconda/envs/lib/python3.7/site-packages/sklearn/preprocessing/_encoders.py", line 80, in _fit
X_list, n_samples, n_features = self._check_X(X)
File "/opt/anaconda/envs/lib/python3.7/site-packages/sklearn/preprocessing/_encoders.py", line 67, in _check_X
force_all_finite=needs_validation)
File "/opt/anaconda/envs/lib/python3.7/site-packages/sklearn/utils/validation.py", line 542, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "/opt/anaconda/envs/lib/python3.7/site-packages/sklearn/utils/validation.py", line 60, in _assert_all_finite
raise ValueError("Input contains NaN")
ValueError: Input contains NaN
最佳答案
重用代码是个好主意,但要注意当您将代码放入函数中时变量的范围如何变化。
您收到的错误是因为有 NaN
引起的您输入到随机森林的数组中的值。在你的feature_engineering_and_selection()
函数,您将删除 NaN
值,但是 df
永远不会从函数返回,因此原始的、未经修改的 df
用于模型中。
我建议拆分你的feature_engineering_and_selection()
功能分为不同的组件。这里我做了一个函数,只删除 NaN
s。
# Iterates through the columns and fixes any NaNs
def remove_nan(df):
replace_dict = {}
for col in df.columns:
# If there are any NaN values in this column
if pd.isna(df[col]).any():
# Replace NaN in object columns with 'N/A'
if df[col].dtypes == 'object':
replace_dict[col] = 'N/A'
# Replace NaN in float columns with 0
elif df[col].dtypes == 'float64':
replace_dict[col] = 0
df = df.fillna(replace_dict)
return df
我建议填写NaN
用 0 代替平均值的数值。对于此数据,有 3 个具有 nan 值的数字列:LotFrontage
(与特性相连的街道英尺数),MasVnrArea
(砌体贴面区域),GarageYrBlt
(车库建成年)。如果没有车库,则没有车库 build 年份,因此将年份设置为 0 而不是平均年份等是有意义的。
还需要使用您设置的单热编码器完成一些工作。创建 one-hot-encoding 可能很棘手,因为训练数据和测试数据需要具有相同的列。如果您有以下训练和测试数据
火车
| House Type |
| ---------- |
| Mansion |
| Ranch |
测试
| House Type |
| ---------- |
| Mansion |
| Duplex |
那么如果使用pd.get_dummies()
火车列将是 [house_type_mansion, house_type_ranch]
测试列将为 [house_type_mansion, house_type_duplex]
,这是行不通的。然而,使用 sklearn,您可以将一个热编码器安装到您的训练数据中。转换测试数据集时,它将创建与训练数据集相同的列。 handle_unknown
参数将告诉编码器如何处理 duplex
在测试集中,要么 ignore
或error
.
# Fits an sklearn one hot encoder
def train_one_hot_encoder(df, categorical_columns):
# take one-hot encoding of categorical columns
categorical_df = df[categorical_columns]
enc = OneHotEncoder(sparse=False, handle_unknown='ignore')
return enc.fit(categorical_df)
为了结合分类和非分类数据,我再次建议创建一个单独的函数
# One hot encodes the given dataframe
def one_hot_encode(df, categorical_columns, encoder):
# Get dataframe with only categorical columns
categorical_df = df[categorical_columns]
# Get one hot encoding
ohe_df = pd.DataFrame(encoder.transform(categorical_df), columns=encoder.get_feature_names())
# Get float columns
float_df = df.drop(categorical_columns, axis=1)
# Return the combined array
return pd.concat([float_df, ohe_df], axis=1)
最后,你的feature_engineering_and_selection()
function 可以调用所有这些函数。
def feature_selection_and_engineering(df, encoder=None):
df = remove_nan(df)
categorical_columns = get_categorical_columns(df)
# If there is no encoder, train one
if encoder == None:
encoder = train_one_hot_encoder(df, categorical_columns)
# Encode Data
df = one_hot_encode(df, categorical_columns, encoder)
# Return the encoded data AND encoder
return df, encoder
为了使代码运行,我必须修复一些问题,我已将整个修改后的脚本包含在此处的要点中 https://gist.github.com/kylelrichards11/6be90d92a7dd6a5cc9a5290dae3ff94e
关于Python 在使用函数时无法接受输入,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57802238/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!