- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
所以我是 Apache Spark 的新手,我有一个如下所示的文件:
Name Size Records
File1 1,000 104,370
File2 950 91,780
File3 1,500 109,123
File4 2,170 113,888
File5 2,000 111,974
File6 1,820 110,666
File7 1,200 106,771
File8 1,500 108,991
File9 1,000 104,007
File10 1,300 107,037
File11 1,900 111,109
File12 1,430 108,051
File13 1,780 110,006
File14 2,010 114,449
File15 2,017 114,889
这是我的示例/测试数据。我正在开发一个异常检测程序,我必须测试具有相同格式但不同值的其他文件,并检测哪个文件的大小和记录值存在异常(如果另一个文件上的大小/记录与标准文件有很大差异) ,或者如果大小和记录彼此不成比例)。我决定开始尝试不同的 ML 算法,并且想从 k-Means 方法开始。我尝试将此文件放在以下行中:
KMeansModel model = kmeans.fit(file)
文件已解析为数据集变量。但是我收到一个错误,我很确定它与文件的结构/模式有关。当尝试适应模型时,有没有办法处理结构化/标记/组织数据?
我收到以下错误:线程“main”java.lang.IllegalArgumentException中出现异常:字段“features”不存在。
这是代码:
public class practice {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Anomaly Detection").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
SparkSession spark = SparkSession
.builder()
.appName("Anomaly Detection")
.getOrCreate();
String day1 = "C:\\Users\\ZK0GJXO\\Documents\\day1.txt";
Dataset<Row> df = spark.read().
option("header", "true").
option("delimiter", "\t").
csv(day1);
df.show();
KMeans kmeans = new KMeans().setK(2).setSeed(1L);
KMeansModel model = kmeans.fit(df);
}
}
谢谢
最佳答案
默认情况下,所有 Spark ML 模型都在名为“features”的列上进行训练。可以通过 setFeaturesCol 方法指定不同的输入列名称 http://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/clustering/KMeans.html#setFeaturesCol(java.lang.String)
更新:
可以使用 VectorAssembler 将多个列组合成一个特征向量:
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[]{"size", "records"})
.setOutputCol("features");
Dataset<Row> vectorized_df = assembler.transform(df)
KMeans kmeans = new KMeans().setK(2).setSeed(1L);
KMeansModel model = kmeans.fit(vectorized_df);
可以使用管道 API 进一步简化和链接这些功能转换 https://spark.apache.org/docs/latest/ml-pipeline.html#example-pipeline
关于java - 当 DataFrame 有列时如何使用 Java Apache Spark MLlib?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44597493/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!