- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试预测每部电影在 IMDb 上的利润。
我的数据框和功能如下:
Actor1 Actor2 Actor3 Actor4 Day Director Genre1 Genre2 Genre3 \
0 0 0 0 0 19.0 0 0 0 0
1 1 1 1 1 6.0 1 1 1 1
2 2 2 2 2 20.0 2 0 2 2
3 3 3 3 3 9.0 3 2 0 -1
4 4 4 4 4 9.0 4 3 3 3
Language Month Production Rated Runtime Writer Year BoxOffice
0 1 0 0 0 118.0 0 2007.0 37500000.0
1 2 1 1 0 151.0 1 2006.0 132300000.0
2 1 1 2 1 130.0 2 2006.0 53100000.0
3 1 2 1 0 117.0 3 2007.0 210500000.0
4 4 3 3 2 117.0 4 2006.0 244052771.0
我试图预测的值(目标)是 BoxOffice。
我正在严格按照 sklearn 的文档进行操作 ( http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error )
from sklearn import preprocessing, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split, cross_val_score
X = dataset[:,0:16] # Features
Y = dataset[:,16] #Target
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.33)
regr = linear_model.LinearRegression()
regr.fit(X_train,Y_train)
mean_squared_error(Y_test, regr.predict(X_test))
输出总是类似于:11385650623660550 ($11,385,650,623,660,500.00)
虽然票房的平均值是:107989121
等等。
我尝试了多种不同的方法、交叉验证以及其他模型(keras),感觉我已经尝试了一切。
返回的总和非常高,这让我怀疑问题不在于模型或数据,而是我缺少的其他东西。
最佳答案
我认为,你的问题与均方误差无关,而是模型本身。
对于您的分类特征,我建议您尝试另一种编码方法,例如 OneHotEncoder。 LabelEncoder 对于线性回归来说不是一个好的选择。
(更多信息:http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f )
在训练模型之前,看看数字特征与目标变量的相关性,也许其中一些不相关,对于分类特征,您可以尝试不同的方法来分析它们与目标变量的关系(例如箱线图)
线性回归需要连续变量,因此您可能还想尝试其他算法。在应用它们之前,请确保您有足够的背景。
关于python - 均方误差返回不合理的高数字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49011791/
我有一个任务,必须求解线性方程组 Ax =B,其中 A 是 10000 量级的稀疏矩阵。我正在使用 csparse 来求解它。在我的初始实现中,出于演示目的,A 是 3*3 阶单位矩阵,B ={1,2
我正在尝试训练随机森林模型,但出现以下错误。我需要对分类模型使用不同的设置来解决 RMSE 问题吗?我尝试将“好”转换为一个因素,但这引发了一个新错误。 错误: Error in train.defa
当使用 %Lf 打印时,一个大的 double 值被改变以下组合的值给出正确的结果小数点前9位/小数点后6位例如用 %Lf 打印的小数点前 9 位的值输入:3435537287.32输出:343553
我正在尝试实现高度为 100% 的重复垂直背景。遗憾的是,每当我试图通过仅添加纯文本来扩展页面的高度时,具有 100% 高度和背景重复的背景就会被切掉。我只想让背景重复。这是屏幕截图。 http://
所以我有: t = [0.0, 3.0, 5.0, 7.2, 10.0, 13.0, 15.0, 20.0, 25.0, 30.0, 35.0] U = [12.5, 10.0, 7.6, 6.0,
我使用了 Nister 的 5 点法来计算基本矩阵。使用 RANSAC 和 Sampson 错误阈值进一步改进了异常值拒绝。我随机选择 5 个点集,估计基本矩阵并评估匹配向量的 Sampson 误差。
为分类问题运行 gbm 函数时。我收到以下错误: Error in res[flag, ] 0.5,1,0) table(pred,df$Group) pred 0 1 0 98
我使用 Angular ngTagsInput,我的列表如下: [{text: "4353453"}, {text: "453453"}, {text: "4534534"}, {text: "53
我正在尝试 Angular 问题,并且坚持理解错误,这意味着如果我无法理解错误,我将无法前进,例如 zone.js:654 Unhandled Promise rejection: Failed to
我有一个关于在线性混合模型上运行事后测试的问题: 我正在 lme4 中运行一个线性混合模型,分为 3 组,每组 5 条蛇,每组采用不同的通气率 (Vent),在不同的位置进行测量时间点 (Time),
我正在尝试运行逻辑回归并不断收到“NA”错误。问题是它说有 NA 的列没有 NA,全是 0 或 1。我的代码如下: #V1=race, V2=momcounts of breast cancer, V
我在输出之间得到随机 NaN。 Random Temp:61.816288952756864 'F Random Temp:NaN 'F Random Temp:NaN 'F Random Temp:
我正在尝试通过取下平板框架来减少我的大炮天文图像,这很有效。但它使所有值都非常低(所以几乎是黑色图片),这就是为什么我也想将其乘以平均值。然而这给了我一个错误。 (虽然没有乘法它也能工作。) 有人知道
我正在使用 adaboost 构建一个模型,并尝试让 roc 图发挥作用。这是我的代码: ens=fitensemble(X,y,'AdaBoostM1',100,'Tree'); [ytest, s
当尝试使用 Protractor 和 Angular Testing 模态窗口上的可见按钮时,我收到以下错误: UnknownError: unknown error: Element is not
我正在尝试使用命令通过 Yeoman 构建 Angular “哟有 Angular ” 一切正常,直到我到达 tmp 目录: npm ERR! Error: EACCES, mkdir '/home/
我在使用 OpenCV 计算立体声对的校正时遇到一些问题:stereoCalibrate 返回高均方根误差,我得到了错误的校正对。我尝试了我的整改程序和 opencv 提供的 stereo_calib
我在 Mac (OS X 10.9) 上安装了 Yeoman,并且正在尝试运行 yo angular。 我收到以下错误: path.js:384 throw new TypeError('Ar
我有运行循环的线程。我需要该循环每 5 毫秒运行一次(1 毫秒错误)。我知道 Sleep() 函数并不精确。 你有什么建议吗? 更新。我不能用其他方式做到这一点。在循环结束时,我需要某种 sleep
我一直在试验 FFT 算法。我使用 NAudio 以及来自互联网的 FFT 算法的工作代码。根据我对性能的观察,生成的音调不准确。 我将 MIDI(从 GuitarPro 生成)转换为 WAV 文件(
我是一名优秀的程序员,十分优秀!