- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在 MxNet(gluon api)上使用多标签逻辑回归训练模型,如下所述:multi-label logit in gluon我的自定义数据集有 13 个特征和一个形状为 [,6] 的标签。我的特征从原始值标准化为 [0,1]我使用带有 2 个隐藏层的简单密集神经网络。
我注意到,当我不标准化标签时(它采用离散值 1,2,3,4,5,6,并且纯粹是我将分类值映射到这些数字的选择),我的训练过程会慢慢收敛到一些最小值例如:
Epoch: 0, ela: 8.8 sec, Loss: 1.118188, Train_acc 0.5589, Test_acc 0.5716
Epoch: 1, ela: 9.6 sec, Loss: 0.916276, Train_acc 0.6107, Test_acc 0.6273
Epoch: 2, ela: 10.3 sec, Loss: 0.849386, Train_acc 0.6249, Test_acc 0.6421
Epoch: 3, ela: 9.2 sec, Loss: 0.828530, Train_acc 0.6353, Test_acc 0.6304
Epoch: 4, ela: 9.3 sec, Loss: 0.824667, Train_acc 0.6350, Test_acc 0.6456
Epoch: 5, ela: 9.3 sec, Loss: 0.817131, Train_acc 0.6375, Test_acc 0.6455
Epoch: 6, ela: 10.6 sec, Loss: 0.815046, Train_acc 0.6386, Test_acc 0.6333
Epoch: 7, ela: 9.4 sec, Loss: 0.811139, Train_acc 0.6377, Test_acc 0.6289
Epoch: 8, ela: 9.2 sec, Loss: 0.808038, Train_acc 0.6381, Test_acc 0.6484
Epoch: 9, ela: 9.2 sec, Loss: 0.806301, Train_acc 0.6405, Test_acc 0.6485
Epoch: 10, ela: 9.4 sec, Loss: 0.804517, Train_acc 0.6433, Test_acc 0.6354
Epoch: 11, ela: 9.1 sec, Loss: 0.803954, Train_acc 0.6389, Test_acc 0.6280
Epoch: 12, ela: 9.3 sec, Loss: 0.803837, Train_acc 0.6426, Test_acc 0.6495
Epoch: 13, ela: 9.1 sec, Loss: 0.801444, Train_acc 0.6424, Test_acc 0.6328
Epoch: 14, ela: 9.4 sec, Loss: 0.799847, Train_acc 0.6445, Test_acc 0.6380
Epoch: 15, ela: 9.1 sec, Loss: 0.795130, Train_acc 0.6454, Test_acc 0.6471
但是,当我标准化标签并再次训练时,我得到了这个连线结果,显示训练和测试的准确率均为 99.99%:
Epoch: 0, ela: 12.3 sec, Loss: 0.144049, Train_acc 0.9999, Test_acc 0.9999
Epoch: 1, ela: 12.7 sec, Loss: 0.023632, Train_acc 0.9999, Test_acc 0.9999
Epoch: 2, ela: 12.3 sec, Loss: 0.013996, Train_acc 0.9999, Test_acc 0.9999
Epoch: 3, ela: 12.7 sec, Loss: 0.010092, Train_acc 0.9999, Test_acc 0.9999
Epoch: 4, ela: 12.7 sec, Loss: 0.007964, Train_acc 0.9999, Test_acc 0.9999
Epoch: 5, ela: 12.6 sec, Loss: 0.006623, Train_acc 0.9999, Test_acc 0.9999
Epoch: 6, ela: 12.6 sec, Loss: 0.005700, Train_acc 0.9999, Test_acc 0.9999
Epoch: 7, ela: 12.4 sec, Loss: 0.005026, Train_acc 0.9999, Test_acc 0.9999
Epoch: 8, ela: 12.6 sec, Loss: 0.004512, Train_acc 0.9999, Test_acc 0.9999
这怎么可能?为什么标准化标签会以这种方式影响训练准确性?
最佳答案
您链接到的教程进行多类分类。在多标签分类中,示例的标签是一个 one-hot 数组。例如标签 [0 0 1 0] 表示该示例属于类别 2(假设类别以 0 开头)。标准化该向量没有意义,因为值已经在 0 和 1 之间。此外,在多类分类中,只有一个标签可以为 true,而另一个标签必须为 false。 0 和 1 以外的值在多类分类中没有意义。
当表示一批示例时,通常将标签写为整数而不是热数组,以便于阅读。例如标签 [4 6 1 7] 表示第一个示例属于类别 4,第二个示例属于类别 6,依此类推。规范化此表示也没有意义,因为此表示在内部转换为一个热数组。
现在,如果您标准化第二个表示形式,则行为是未定义的,因为浮点不能是数组索引。可能发生了一些奇怪的事情才给你 99% 的准确率。也许您将值标准化为 0 到 1,并且生成的 one-hot 数组主要指向 0 类,很少指向 1 类。这可以为您提供 99% 的准确度。
我建议不要标准化标签。
关于machine-learning - 为什么在 MxNet 中标准化标签可以使准确率接近 100%?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49217210/
某人在 Silverlight posted MVVM 目前缺乏标准化,所以每个人都有自己的风格.. 这就是为什么我和 WPF Disciples 的一些人正在积极讨论每个人都同意的 MVVM 元素。
我有以下数据集: dat tests2 * 20 Score 1 13.333333 2 10.666667 3 2.666667 4 9.333333 5 13.3333
我有一个 double 组,表示某些事件发生的概率,[25,25,25,10,15] 表示事件 A,B..E。这些数字加起来是 100。 通过我的分析,我希望能够排除某个事件发生或不发生的可能性。 所
USPS webtools 很贵,而且 Google Maps 没有某些地址。有没有免费或开源的解决方案? 最佳答案 根据您的业务性质,或者如果您是非营利或教育机构,有一家在线提供商可为您提供 fre
我有一个 json 对象,里面有对象例如 user: {"name": "tim"} 并希望有一种方法将其转换为 "user.name": 'tim' 我已经尝试过:Javascript Recurs
我有一个名为 spam 的数据集,其中包含与垃圾邮件相关的 58 列和大约 3500 行数据。 我计划将来对此数据集运行一些线性回归,但我想事先进行一些预处理并将列标准化为均值和单位方差为零。 我被告
我试图找到一种方法来强调音频中高点和低点之间的差异。我似乎找不到有关如何执行此操作的文档-也许可以使用ffmpeg完成。非常感谢来自对信号处理了解更多的人的一些指导。 最佳答案 从根本上讲,膨胀器与压
如何缩放/规范化每行数据(观察)?像 [-1:1] 这样的 z 分数? 我看过之前的帖子,其中涉及整个数据集的标准化,如下所示 https://stats.stackexchange.com/ques
例如: http://www.google.co.uk www.google.co.uk google.co.uk 将全部转换为: google.co.uk 我本来想使用 System.Uri 类,但
我可以使用此代码从 json 文件导入数据... import requests from pandas.io.json import json_normalize url = "https://da
规范化 Prolog 原子中空白字符(空格、换行符、制表符)的最佳方法是什么,例如在 SWI-Prolog 中。IE。我想要一个规则: normalize_space_in_atom(+Atom1,
如何缩放/规范化每行数据(观察)?像 [-1:1] 这样的 z 分数? 我看过之前的帖子,其中涉及整个数据集的标准化,如下所示 https://stats.stackexchange.com/ques
我正在尝试阅读代码片段,但它对我来说没有任何意义。请帮助我 /** * To make it easy to query for the exact date, we normalize all
我是一名研究人员,拥有大约 17,000 份自由文本文档,其中大约 30-40% 与我的结果相关。是否有一个开源工具可以用来确定与结果相关的最常见的单词(甚至短语,但不是必需的),并对已经出现的单词的
我正在尝试使用 L2 范数(单位长度)对 numpy 矩阵的行进行标准化。 当我这样做时,我发现了一个问题。 假设我的矩阵“b”如下: 现在,当我对第一行进行标准化时,如下所示,它工作正常。 但是当我
我有一个 3 列数组。数组的第一列的值介于 1 和 10 之间。我需要提取第一列为 1 的所有行,并规范化该数组切片的第三列。然后对第一列等于 2 等的所有行重复相同的操作。 如果我运行此代码,它会使
如果我通过许多不同的文件/脚本使用这个结构当需要更改时,如何才能只更改一个地方,而不必在每个文件中更改它。 u = contents incomingUrl = urlparse(u).query o
我有 1MB 的文本文件。我想删除空格、换行符、制表符,并以 4KB 迭代方式将 1MB 文件的字符大小写从小写转换为大写。 我写了这段代码: for (i = 0, j= 0; i 首先,让我们定
这实际上是一个机器学习分类问题,但我想有一种非常好的快速而肮脏的方法来做到这一点。我想将描述 NFL 球队的字符串(例如“San Francisco”或“49ers”或“San Francisco 4
我正在创建游戏评论数据库。我对此很陌生,但我正在尽力。关于数据库的一点点:系统很简单,用户填写 php 表单,在其中插入他的姓名、电子邮件,然后选择反馈是好还是坏并留下评论/建议。我正在添加照片的视觉
我是一名优秀的程序员,十分优秀!