gpt4 book ai didi

Python语音识别器类型错误: '>' not supported between instances of 'float' and 'NoneType'

转载 作者:行者123 更新时间:2023-11-30 09:32:22 25 4
gpt4 key购买 nike

我正在使用 Python 3.6 中的语音识别器代码,其中包含隐马尔可夫模型 (HMM)。由 .wav 文件组成的训练数据(输入文件夹)组织为

train
pineapple
apple
banana
orange
kiwi
peach
lime

类似的模式用于test数据文件夹。

代码从命令提示符运行:

python Speech-Recognizer.py --input-folder train

代码粘贴在下面:

import os
import argparse

import numpy as np
from scipy.io import wavfile
from hmmlearn import hmm
from python_speech_features import mfcc

# Function to parse input arguments
def build_arg_parser():
parser = argparse.ArgumentParser(description='Trains the HMM classifier')
parser.add_argument("--input-folder", dest="input_folder", required=True,
help="Input folder containing the audio files in subfolders")
return parser


# Class to handle all HMM related processing
class HMMTrainer(object):
def __init__(self, model_name='GaussianHMM', n_components=4, cov_type='diag', n_iter=1000):
self.model_name = model_name
self.n_components = n_components
self.cov_type = cov_type
self.n_iter = n_iter
self.models = []

if self.model_name == 'GaussianHMM':
self.model = hmm.GaussianHMM(n_components=self.n_components,
covariance_type=self.cov_type, n_iter=self.n_iter)
else:
raise TypeError('Invalid model type')

# X is a 2D numpy array where each row is 13D
def train(self, X):
np.seterr(all='ignore')
self.models.append(self.model.fit(X))

# Run the model on input data
def get_score(self, input_data):
return self.model.score(input_data)


if __name__ == '__main__':
args = build_arg_parser().parse_args()
input_folder = args.input_folder

hmm_models = []

# Parse the input directory
for dirname in os.listdir(input_folder):
# Get the name of the subfolder
subfolder = os.path.join(input_folder, dirname)

if not os.path.isdir(subfolder):
continue

# Extract the label
label = subfolder[subfolder.rfind('/') + 1:]

# Initialize variables
X = np.array([])
y_words = []

# Iterate through the audio files (leaving 1 file for testing in each class)
for filename in [x for x in os.listdir(subfolder) if x.endswith('.wav')][:-1]:
# Read the input file
filepath = os.path.join(subfolder, filename)
sampling_freq, audio = wavfile.read(filepath)

# Extract MFCC features
mfcc_features = mfcc(audio, sampling_freq)

# Append to the variable X
if len(X) == 0:
X = mfcc_features
else:
X = np.append(X, mfcc_features, axis=0)

# Append the label
y_words.append(label)

print('X.shape =', X.shape)
# Train and save HMM model
hmm_trainer = HMMTrainer()
hmm_trainer.train(X)
hmm_models.append((hmm_trainer, label))
hmm_trainer = None

# Test files
input_files = [
'test/pineapple/pineapple15.wav',
'test/orange/orange15.wav',
'test/apple/apple15.wav',
'test/kiwi/kiwi15.wav'
]

# Classify input data
for input_file in input_files:
# Read input file
sampling_freq, audio = wavfile.read(input_file)

# Extract MFCC features
mfcc_features = mfcc(audio, sampling_freq)

# Define variables
max_score = None
output_label = None

# Iterate through all HMM models and pick
# the one with the highest score
for item in hmm_models:
hmm_model, label = item
score = hmm_model.get_score(mfcc_features)
if score > max_score:
max_score = score
output_label = label

# Print the output
print("\nTrue:", input_file[input_file.find('/') + 1:input_file.rfind('/')])
print("Predicted:", output_label)


运行上述代码时出现以下错误:

Traceback (most recent call last):
File "Speech-Recognizer.py", line 113, in <module>
if score > max_score:
TypeError: '>' not supported between instances of 'float' and 'NoneType'

最佳答案

        max_score = None
...
if score > max_score:

您正在尝试将 float 与 None 进行比较。

用 max_score = 0 代替 max_score = None 怎么样?

关于Python语音识别器类型错误: '>' not supported between instances of 'float' and 'NoneType' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53083966/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com