gpt4 book ai didi

python - 从头开始Python中的K表示

转载 作者:行者123 更新时间:2023-11-30 09:31:48 25 4
gpt4 key购买 nike

我有一个 k-means 算法的 python 代码。我很难理解它的作用。像 C = X[numpy.random.choice(X.shape[0], k, Replace=False), :] 这样的行让我感到非常困惑。

有人能解释一下这段代码实际上在做什么吗?谢谢

def k_means(data, k, num_of_features):
# Make a matrix out of the data
X = data.as_matrix()
# Get k random points from the data
C = X[numpy.random.choice(X.shape[0], k, replace=False), :]
# Remove the last col
C = [C[j][:-1] for j in range(len(C))]
# Turn it into a numpy array
C = numpy.asarray(C)
# To store the value of centroids when it updates
C_old = numpy.zeros(C.shape)
# Make an array that will assign clusters to each point
clusters = numpy.zeros(len(X))
# Error func. - Distance between new centroids and old centroids
error = dist(C, C_old, None)
# Loop will run till the error becomes zero of 5 tries
tries = 0
while error != 0 and tries < 1:
# Assigning each value to its closest cluster
for i in range(len(X)):
# Get closest cluster in terms of distance
clusters[i] = dist1(X[i][:-1], C)
# Storing the old centroid values
C_old = deepcopy(C)
# Finding the new centroids by taking the average value
for i in range(k):
# Get all of the points that match the cluster you are on
points = [X[j][:-1] for j in range(len(X)) if clusters[j] == i]
# If there were no points assigned to cluster, put at origin
if not points:
C[i][:] = numpy.zeros(C[i].shape)
else:
# Get the average of all the points and put that centroid there
C[i] = numpy.mean(points, axis=0)
# Erro is the distance between where the centroids use to be and where they are now
error = dist(C, C_old, None)
# Increase tries
tries += 1
return sil_coefficient(X,clusters,k)

最佳答案

(扩展答案,稍后格式化)X 是数据,作为矩阵。使用 [] 符号,我们从矩阵中进行切片或选择单个元素。您可能想查看 numpy 数组索引。 https://docs.scipy.org/doc/numpy/reference/arrays.indexing.htmlnumpy.random.choice 从数据矩阵第一维的大小中随机选择 k 个元素,无需放回。请注意,在索引中,使用 [] 语法,我们看到有两个条目。 numpy.random.choice 和“:”。“:”表示我们正在沿着该轴进行所有操作。

因此, X[numpy.random.choice(X.shape[0], k, Replace=False), :] 意味着我们沿第一个轴选择一个元素,并沿第二个轴选取共享第一个索引的每个元素。实际上,我们正在选择矩阵的随机行。

(注释很好地解释了这段代码,我建议您阅读 numpy 索引列表理解以进一步说明)。

C[C[j][:-1] for j in range(len(c))]“C[”之后的部分使用列表理解来选择矩阵 C 的部分。

C[j] 表示矩阵 C 的行。我们使用 [:-1] 来获取该行的最后一个元素,但不包括该元素。我们对矩阵 C 中的每一行执行此操作。这会删除矩阵的最后一列。

C = numpy.asarray(C)。这会将矩阵转换为 numpy 数组,这样我们就可以用它做特殊的 numpy 事情。

C_old = numpy.zeros(C.shape)。这将创建一个零矩阵,稍后填充,其大小与 C 相同。我们正在初始化该数组,以便稍后填充。

簇 = numpy.zeros(len(x))。这将创建一个零向量,其维度与矩阵 X 中的行数相同。稍后将填充该向量。我们正在初始化该数组以便稍后填充。

错误= dist(C, C_old, None)。求两个矩阵之间的距离。我相信这个函数可以在脚本的其他地方定义。

tries = 0。将轮胎计数器设置为 0。

while...当条件成立时执行此 block 。

对于 [0...(X 中的行数 - 1)] 中的 i:

簇[i] = dist1(X[i][:-1], C);将 X 的第 i 行最接近的簇放在簇的第 i 个位置。

C_old = deepcopy(C) - 创建 C 的新副本。不要只是移动指针。

对于每个(0..平均值 - 1):

如果 cluster[j] == i],则点 = [X[j][:-1],对于范围 (len(X)) 内的 j。这是列表理解。创建 X 的行列表,其中包含除最后一项之外的所有行,但仅包含属于第 j 个簇的行。

如果没有积分。如果没有任何东西属于集群。

C[i][:] = numpy.zeros(C[i].shape)。创建一个由零组成的向量,稍后填充,并使用该向量作为簇矩阵 C 的第 i 行。

其他:

C[i] = np.mean(点,轴=0)。将聚类矩阵 C 的第 i 行指定为聚类中的平均点。我们对各行求和(轴 = 0)。这是我们更新集群。

关于python - 从头开始Python中的K表示,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54845820/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com