gpt4 book ai didi

python - 属性错误: module "sklearn.utils" has no attribute "_joblib" when inheriting class `sklearn.ensemble.BaggingClassifier.`

转载 作者:行者123 更新时间:2023-11-30 09:31:25 33 4
gpt4 key购买 nike

我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。

为此,我创建了一个继承自 sklearn.ensemble.BaggingClassifier 的扩展类,并添加了一个允许获取这些概率的新方法。请注意,此问题与 ModuleNotFoundError: No module named 'sklearn.utils._joblib' 不同

我在下面展示了到目前为止我已经实现的代码片段:

必要的模块

from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble.base import _partition_estimators
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
import sklearn.utils as su

继承自BaggingClassifier的子类

class EBaggingClassifier(BaggingClassifier):
"""
Extends the class BaggingClassifier fromsklearn

"""

def __init__(self,
base_estimator=None,
n_estimators=10,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=False,
warm_start=False,
n_jobs=1,
random_state=None,
verbose=0):

super().__init__(
base_estimator,
n_estimators,
max_samples,
max_features,
bootstrap,
bootstrap_features,
oob_score,
warm_start,
n_jobs,
random_state,
verbose)

允许计算每个估计量概率的新方法定义如下。

    def predict_proball(self, X):
"""
Computes the probability of each individual estimator

Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.

Returns
-------
p : array of shape = [n_samples, n_classes]
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""

check_is_fitted(self, "classes_")
# Check data
X = check_array(
X, accept_sparse=['csr', 'csc'], dtype=None,
force_all_finite=False
)

if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} and "
"input n_features is {1}."
"".format(self.n_features_, X.shape[1]))

# Parallel loop
n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
self.n_jobs)

all_proba = su._joblib.Parallel(n_jobs=n_jobs, verbose=self.verbose,
**self._parallel_args())(
su._joblib.delayed(BaggingClassifier._parallel_predict_proba)(
self.estimators_[starts[i]:starts[i + 1]],
self.estimators_features_[starts[i]:starts[i + 1]],
X,
self.n_classes_)
for i in range(n_jobs))

return all_proba

我使用 XGBoostClassifier 作为基本估计器实例化此类:

base_estimator = XGBoostClassifier(**params)
estimator = EBaggingClassifier(base_estimator=base_estimator, max_samples=0.8, n_estimators=10)

然后使用 estimator.fit(X, y) 进行估计器,其中 Xypandas.DataFrame 对象。当我尝试运行 estimator.predict_proball(X) 我得到

>>> estimator.predict_proball(X)
AttributeError: module 'sklearn.utils' has no attribute '_joblib'

有人知道为什么会发生这种情况吗?查看BaggingClassifier script函数“sklearn.utils._joblib”应该可用。

仅供引用:

>>> sklearn.__version__
'0.19.2'

最佳答案

问题出在您的 scikit-learn 版本上。版本'0.19.2'没有_joblib,可以引用here 。或者您可以使用以下命令进行检查:

dir(su)

您需要更新scikit-learn,最新版本有_joblib,可以引用here .

您在版本'0.20.2'中获得以下内容:

>>> dir(su)
['Bunch', 'DataConversionWarning', 'IS_PYPY', 'Memory', 'Parallel', 'Sequence',
'_IS_32BIT', '__all__', '__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__path__', '__spec__', '_joblib',
'_show_versions', 'as_float_array', 'assert_all_finite', 'axis0_safe_slice',
'check_X_y', 'check_array', 'check_consistent_length', 'check_random_state',
'check_symmetric', 'class_weight', 'column_or_1d', 'compute_class_weight',
'compute_sample_weight', 'cpu_count', 'delayed', 'deprecate', 'deprecated',
'deprecation', 'effective_n_jobs', 'fixes', 'gen_batches', 'gen_even_slices',
'get_chunk_n_rows', 'get_config', 'hash', 'indexable', 'indices_to_mask',
'is_scalar_nan', 'issparse', 'msg', 'murmurhash', 'murmurhash3_32', 'np',
'numbers', 'parallel_backend', 'platform', 'register_parallel_backend',
'resample', 'safe_indexing', 'safe_mask', 'safe_sqr', 'shuffle', 'struct',
'tosequence', 'validation', 'warnings']

您可以按如下方式更新scikit-learn:

pip install -U scikit-learn

关于python - 属性错误: module "sklearn.utils" has no attribute "_joblib" when inheriting class `sklearn.ensemble.BaggingClassifier.` ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56268777/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com