- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我根据Analytics Vidhya上的教程改编了一个简单的CNN .
问题是我在保留集上的准确性并不比随机的更好。我正在训练大约 8600 张猫和狗的图像,这对于像样的模型来说应该是足够的数据,但测试集的准确率为 49%。我的代码中是否有明显的遗漏?
import os
import numpy as np
import keras
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from datetime import datetime
from PIL import Image
from keras.utils.np_utils import to_categorical
from sklearn.utils import shuffle
def main():
cat=os.listdir("train/cats")
dog=os.listdir("train/dogs")
filepath="train/cats/"
filepath2="train/dogs/"
print("[INFO] Loading images of cats and dogs each...", datetime.now().time())
#print("[INFO] Loading {} images of cats and dogs each...".format(num_images), datetime.now().time())
images=[]
label = []
for i in cat:
image = Image.open(filepath+i)
image_resized = image.resize((300,300))
images.append(image_resized)
label.append(0) #for cat images
for i in dog:
image = Image.open(filepath2+i)
image_resized = image.resize((300,300))
images.append(image_resized)
label.append(1) #for dog images
images_full = np.array([np.array(x) for x in images])
label = np.array(label)
label = to_categorical(label)
images_full, label = shuffle(images_full, label)
print("[INFO] Splitting into train and test", datetime.now().time())
(trainX, testX, trainY, testY) = train_test_split(images_full, label, test_size=0.25)
filters = 10
filtersize = (5, 5)
epochs = 5
batchsize = 32
input_shape=(300,300,3)
#input_shape = (30, 30, 3)
print("[INFO] Designing model architecture...", datetime.now().time())
model = Sequential()
model.add(keras.layers.InputLayer(input_shape=input_shape))
model.add(keras.layers.convolutional.Conv2D(filters, filtersize, strides=(1, 1), padding='same',
data_format="channels_last", activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=2, input_dim=50,activation='softmax'))
#model.add(keras.layers.Dense(units=2, input_dim=5, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print("[INFO] Fitting model...", datetime.now().time())
model.fit(trainX, trainY, epochs=epochs, batch_size=batchsize, validation_split=0.3)
model.summary()
print("[INFO] Evaluating on test set...", datetime.now().time())
eval_res = model.evaluate(testX, testY)
print(eval_res)
if __name__== "__main__":
main()
最佳答案
对我来说,问题来自于你的网络的大小,你只有一个过滤器大小为 10 的 Conv2D。这太小了,无法学习图像的深度表示。
尝试通过使用 VGGnet 等常见架构 block 来大幅增加这一点!
block 示例:
x = Conv2D(32, (3, 3) , padding='SAME')(model_input)
x = LeakyReLU(alpha=0.3)(x)
x = BatchNormalization()(x)
x = Conv2D(32, (3, 3) , padding='SAME')(x)
x = LeakyReLU(alpha=0.3)(x)
x = BatchNormalization()(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(0.25)(x)
您需要尝试多个类似的 block ,并增加过滤器大小以捕获更深层次的特征。
另一件事,你不需要指定密集层的 input_dim,keras 会自动处理这个!
最后但并非最不重要的一点是,您需要完全连接的网络才能正确分类图像,而不仅仅是单层。
例如:
x = Flatten()(x)
x = Dense(256)(x)
x = LeakyReLU(alpha=0.3)(x)
x = Dense(128)(x)
x = LeakyReLU(alpha=0.3)(x)
x = Dense(2)(x)
x = Activation('softmax')(x)
尝试这些更改并与我保持联系!
图像很复杂,它们包含很多信息,如形状、边缘、颜色等
为了捕获最大量的信息,您需要通过多个卷积来学习图像的不同方面。想象一下,例如第一个卷积将学习识别正方形,第二个卷积将学习识别圆形,第三个卷积将学习识别边缘,等等..
对于我的第二点,最终的全连接就像一个分类器,转换网络将输出一个“代表”狗或猫的向量,现在你需要知道这种向量是一类还是另一种。
直接在最后一层输入该向量不足以学习这种表示。
这样是不是更清楚了?
这里定义 Keras 模型的两种方法,都输出相同的内容!
model_input = Input(shape=(200, 1))
x = Dense(32)(model_input)
x = Dense(16)(x)
x = Activation('relu')(x)
model = Model(inputs=model_input, outputs=x)
model = Sequential()
model.add(Dense(32, input_shape=(200, 1)))
model.add(Dense(16, activation = 'relu'))
model = Sequential()
model.add(keras.layers.InputLayer(input_shape=input_shape))
model.add(keras.layers.convolutional.Conv2D(32, (3,3), strides=(2, 2), padding='same', activation='relu'))
model.add(keras.layers.convolutional.Conv2D(32, (3,3), strides=(2, 2), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.convolutional.Conv2D(64, (3,3), strides=(2, 2), padding='same', activation='relu'))
model.add(keras.layers.convolutional.Conv2D(64, (3,3), strides=(2, 2), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
不要忘记在将数据输入网络之前对数据进行标准化。
对数据进行简单的 images_full = images_full/255.0
可以大大提高您的准确性。
也尝试一下灰度图像,它的计算效率更高。
关于python - CNN 对猫/狗图像二元分类的准确度并不比随机分类好,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56973955/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!