gpt4 book ai didi

machine-learning - precision_recall_fscore_support 返回相同的准确度、精确度和召回率值

转载 作者:行者123 更新时间:2023-11-30 09:29:12 26 4
gpt4 key购买 nike

我正在训练逻辑回归分类模型,并尝试使用混淆矩阵比较结果,并计算精度、召回率、准确性代码如下

# logistic regression classification model
clf_lr = sklearn.linear_model.LogisticRegression(penalty='l2', class_weight='balanced')
logistic_fit=clf_lr.fit(TrainX, np.where(TrainY >= delay_threshold,1,0))
pred = clf_lr.predict(TestX)

# print results
cm_lr = confusion_matrix(np.where(TestY >= delay_threshold,1,0), pred)
print("Confusion matrix")
print(pd.DataFrame(cm_lr))
report_lr = precision_recall_fscore_support(list(np.where(TestY >= delay_threshold,1,0)), list(pred), average='micro')
print ("\nprecision = %0.2f, recall = %0.2f, F1 = %0.2f, accuracy = %0.2f\n" % \
(report_lr[0], report_lr[1], report_lr[2], accuracy_score(list(np.where(TestY >= delay_threshold,1,0)), list(pred))))
print(pd.DataFrame(cm_lr.astype(np.float64) / cm_lr.sum(axis=1)))

show_confusion_matrix(cm_lr)
#linear_score = cross_validation.cross_val_score(linear_clf, ArrX, ArrY,cv=10)
#print linear_score

预期结果是

Confusion matrix
0 1
0 4303 2906
1 1060 1731

precision = 0.37, recall = 0.62, F1 = 0.47, accuracy = 0.60

0 1
0 0.596893 1.041204
1 0.147038 0.620208

但是我的输出是

Confusion matrix
0 1
0 4234 2891
1 1097 1778

precision = 0.60, recall = 0.60, F1 = 0.60, accuracy = 0.60

0 1
0 0.594246 1.005565
1 0.153965 0.618435

如何获得正确的结果?

最佳答案

在像您这样的“二进制”情况(2个类)中,您需要使用average='binary'而不是average='micro'。

例如:

TestY = [0, 1, 1, 0, 1, 1, 1, 0, 0, 0]
pred = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0]
# print results
cm_lr = metrics.confusion_matrix(TestY, pred)
print("Confusion matrix")
print(pd.DataFrame(cm_lr))
report_lr = metrics.precision_recall_fscore_support(TestY, pred, average='binary')
print ("\nprecision = %0.2f, recall = %0.2f, F1 = %0.2f, accuracy = %0.2f\n" % \
(report_lr[0], report_lr[1], report_lr[2], metrics.accuracy_score(TestY, pred)))

和输出:

Confusion matrix
0 1
0 4 1
1 2 3

precision = 0.75, recall = 0.60, F1 = 0.67, accuracy = 0.70

Binary 有一个默认定义,即哪个类是正类(带有 1 标签的类)。您可以在这个link中阅读所有平均选项之间的差异。 .

关于machine-learning - precision_recall_fscore_support 返回相同的准确度、精确度和召回率值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43001014/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com