gpt4 book ai didi

machine-learning - 如何在Keras中使一层输出两层,并且一层连接到两层?

转载 作者:行者123 更新时间:2023-11-30 09:29:00 25 4
gpt4 key购买 nike

我想在 Keras 中制作一个模型,一些层的连接如下:

    MaxPooling
/\
/ \
pooled poolmask convLayer
\ /
\ /
upsample

这种类型的连接就像Segnet,并且在Caffe中很容易实现。但不知道如何用keras实现。

有人可以帮助我吗?

最佳答案

在 Keras 中也很容易,但您需要使用 Keras 功能 API。

在这里您可以找到一个示例https://keras.io/getting-started/functional-api-guide/

enter image description here

代码:

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model

# Headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# Note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input')

# This embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)



# A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)


auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

# We stack a deep densely-connected network on top
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)

# And finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])

model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)

关于machine-learning - 如何在Keras中使一层输出两层,并且一层连接到两层?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46089762/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com