gpt4 book ai didi

python - 基于出现频率的SVM分类

转载 作者:行者123 更新时间:2023-11-30 09:28:51 29 4
gpt4 key购买 nike

此问题与 my own question on Cross Validated 相关,尽管这个重点是在 Python 中寻找特定的解决方案,因此我将其发布在这里。

我正在尝试根据事件发生的频率对事件进行分类。我的数据集大致如下:

月_年、地理区域、事件类型、发生次数
'2016年1月',1,'A',50
'2016年1月',1,'B',20
'2016年1月',2,'A',10
'2016年1月',2,'B',18
'2016 年 2 月',1,'A',62
'2016年02月',1,'B',29
'2016 年 2 月',2,'A',14
'2016 年 2 月',2,'B',22
'2016年03月',1,'A',59
'2016 年 3 月',1,'B',27
'2016年3月',2,'A',16
'2016 年 3 月',2,'B',23

每月收集 n 个区域和 m 个事件类型的数据(在此简化情况下为 2 和 2)。我得到了在该时间和地点内这些事件发生的频率。

我想在给定[month_year, Geological_zone]的情况下预测这些事件在未来发生的可能性。我不确定如何利用 count_of_occurrences 列来训练分类器。问题是我不知道未见数据的事件计数,因此我无法使用诸如 clf.predict([month_year, Geological_zone, count_of_occurrences]) 之类的方法查询模型。也许概率分类器更适合?

这是我当前代码的简化版本,包括我遇到困难的注释:

from sklearn import svm
from sklearn.model_selection import train_test_split

X = [
# [month_year, geographic_zone, count_of_occurrences] after encoding
[1, 1, 50],
[1, 1, 20],
[1, 2, 10],
[1, 2, 18],
[2, 1, 62],
[2, 1, 29],
[2, 2, 14],
[2, 2, 22],
[3, 1, 59],
[3, 1, 27],
[3, 2, 16],
[3, 2, 23],
]

# event_types, 1=A, 2=B
y = [
1, 2, 1, 2,
1, 2, 1, 2,
1, 2, 1, 2,
]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

clf = svm.SVC(probability=True)

# I am fitting the model using the count_of_occurrences feature, however
# I won't have knowledge about this value for unseen data all I will really
# know is the month_year and geographic_zone for which I want to make predictions
clf.fit(X_train, y_train)

print(clf.predict_proba(X_test))

如何利用分类器中的出现/频率计数?

最佳答案

您可以将相应数量的事件放入训练集中,让模型自行计算它们的相对概率。因此,在数据预处理和模型开发过程中不需要费力地处理 count_of_occurrences :-)。

顺便说一句,这不是直接问题,但如果您的数据是季节性的,那么您不应该忘记将月份和年份拆分为单独的特征。

from sklearn import svm


data = [
# year, month, geo, type, count
[2016, 1, 1, 'A', 50],
[2016, 1, 1, 'B', 20],
[2016, 1, 2, 'A', 10],
[2016, 1, 2, 'B', 18],
[2016, 2, 1, 'A', 62],
[2016, 2, 1, 'B', 29],
[2016, 2, 2, 'A', 14],
[2016, 2, 2, 'B', 22],
[2016, 3, 1, 'A', 59],
[2016, 3, 1, 'B', 27],
[2016, 3, 2, 'A', 16],
[2016, 3, 2, 'B', 23],
]

X = []
y = []

for year, month, geo, t, count in data:
for i in range(count):
X.append([year, month, geo])
y.append(t)

clf = svm.SVC(probability=True)

clf.fit(X, y)

test = [
[year, month, geo]
for year in [2016, 2017]
for month in range(1, 13)
for geo in [1, 2]
]

prediction = clf.predict_proba(test)

for (year, month, geo), proba in zip(test, prediction):
s = " ".join("%s=%.2f" % (cls, p)
for cls, p in zip(clf.classes_, proba))
print("%d-%02d geo=%d: %s" % (year, month, geo, s))

结果:

2016-01 geo=1: A=0.69 B=0.31
2016-01 geo=2: A=0.39 B=0.61
2016-02 geo=1: A=0.69 B=0.31
2016-02 geo=2: A=0.39 B=0.61
2016-03 geo=1: A=0.69 B=0.31
2016-03 geo=2: A=0.39 B=0.61
2016-04 geo=1: A=0.65 B=0.35
2016-04 geo=2: A=0.43 B=0.57
2016-05 geo=1: A=0.59 B=0.41
2016-05 geo=2: A=0.50 B=0.50
2016-06 geo=1: A=0.55 B=0.45
2016-06 geo=2: A=0.54 B=0.46
2016-07 geo=1: A=0.55 B=0.45
2016-07 geo=2: A=0.54 B=0.46
2016-08 geo=1: A=0.55 B=0.45
2016-08 geo=2: A=0.54 B=0.46
2016-09 geo=1: A=0.55 B=0.45
2016-09 geo=2: A=0.55 B=0.45
2016-10 geo=1: A=0.55 B=0.45
2016-10 geo=2: A=0.55 B=0.45
2016-11 geo=1: A=0.55 B=0.45
2016-11 geo=2: A=0.55 B=0.45
2016-12 geo=1: A=0.55 B=0.45
2016-12 geo=2: A=0.55 B=0.45
2017-01 geo=1: A=0.65 B=0.35
2017-01 geo=2: A=0.43 B=0.57
2017-02 geo=1: A=0.65 B=0.35
2017-02 geo=2: A=0.43 B=0.57
2017-03 geo=1: A=0.65 B=0.35
2017-03 geo=2: A=0.43 B=0.57
2017-04 geo=1: A=0.62 B=0.38
2017-04 geo=2: A=0.46 B=0.54
2017-05 geo=1: A=0.58 B=0.42
2017-05 geo=2: A=0.51 B=0.49
2017-06 geo=1: A=0.55 B=0.45
2017-06 geo=2: A=0.54 B=0.46
2017-07 geo=1: A=0.55 B=0.45
2017-07 geo=2: A=0.54 B=0.46
2017-08 geo=1: A=0.55 B=0.45
2017-08 geo=2: A=0.54 B=0.46
2017-09 geo=1: A=0.55 B=0.45
2017-09 geo=2: A=0.55 B=0.45
2017-10 geo=1: A=0.55 B=0.45
2017-10 geo=2: A=0.55 B=0.45
2017-11 geo=1: A=0.55 B=0.45
2017-11 geo=2: A=0.55 B=0.45
2017-12 geo=1: A=0.55 B=0.45
2017-12 geo=2: A=0.55 B=0.45

关于python - 基于出现频率的SVM分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48478653/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com