- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我对深度学习还很陌生,所以如果我遗漏了一些明显的东西,我很抱歉。
我目前正在使用我整理的数据集训练 CNN。训练时,训练准确率表现得非常正常,并且有所提高,达到 >99% 的准确率。我的验证准确率一开始约为 75%,并在 81% ± 1% 左右波动。训练后,模型在全新数据上表现非常好。
Epoch 1/100
187/187 [==============================] - 103s 550ms/step - loss: 1.1336 - acc: 0.5384 - val_loss: 0.8065 - val_acc: 0.7405
Epoch 2/100
187/187 [==============================] - 97s 519ms/step - loss: 0.8041 - acc: 0.7345 - val_loss: 0.7566 - val_acc: 0.7720
Epoch 3/100
187/187 [==============================] - 97s 519ms/step - loss: 0.7194 - acc: 0.7945 - val_loss: 0.7410 - val_acc: 0.7846
Epoch 4/100
187/187 [==============================] - 97s 517ms/step - loss: 0.6688 - acc: 0.8324 - val_loss: 0.7295 - val_acc: 0.7924
Epoch 5/100
187/187 [==============================] - 97s 518ms/step - loss: 0.6288 - acc: 0.8611 - val_loss: 0.7197 - val_acc: 0.7961
Epoch 6/100
187/187 [==============================] - 96s 515ms/step - loss: 0.5989 - acc: 0.8862 - val_loss: 0.7252 - val_acc: 0.7961
Epoch 7/100
187/187 [==============================] - 96s 514ms/step - loss: 0.5762 - acc: 0.8981 - val_loss: 0.7135 - val_acc: 0.8063
Epoch 8/100
187/187 [==============================] - 97s 518ms/step - loss: 0.5513 - acc: 0.9186 - val_loss: 0.7089 - val_acc: 0.8077
Epoch 9/100
187/187 [==============================] - 96s 513ms/step - loss: 0.5351 - acc: 0.9280 - val_loss: 0.7113 - val_acc: 0.8053
Epoch 10/100
187/187 [==============================] - 96s 514ms/step - loss: 0.5189 - acc: 0.9417 - val_loss: 0.7167 - val_acc: 0.8094
Epoch 11/100
187/187 [==============================] - 96s 515ms/step - loss: 0.5026 - acc: 0.9483 - val_loss: 0.7104 - val_acc: 0.8162
Epoch 12/100
187/187 [==============================] - 96s 516ms/step - loss: 0.4914 - acc: 0.9538 - val_loss: 0.7114 - val_acc: 0.8101
Epoch 13/100
187/187 [==============================] - 96s 515ms/step - loss: 0.4809 - acc: 0.9583 - val_loss: 0.7099 - val_acc: 0.8141
Epoch 14/100
187/187 [==============================] - 96s 512ms/step - loss: 0.4681 - acc: 0.9656 - val_loss: 0.7149 - val_acc: 0.8182
Epoch 15/100
187/187 [==============================] - 96s 515ms/step - loss: 0.4605 - acc: 0.9701 - val_loss: 0.7139 - val_acc: 0.8172
Epoch 16/100
187/187 [==============================] - 96s 514ms/step - loss: 0.4479 - acc: 0.9753 - val_loss: 0.7102 - val_acc: 0.8182
Epoch 17/100
187/187 [==============================] - 96s 513ms/step - loss: 0.4418 - acc: 0.9805 - val_loss: 0.7087 - val_acc: 0.8247
Epoch 18/100
187/187 [==============================] - 96s 512ms/step - loss: 0.4363 - acc: 0.9809 - val_loss: 0.7148 - val_acc: 0.8213
Epoch 19/100
187/187 [==============================] - 96s 516ms/step - loss: 0.4225 - acc: 0.9870 - val_loss: 0.7184 - val_acc: 0.8203
Epoch 20/100
187/187 [==============================] - 96s 513ms/step - loss: 0.4241 - acc: 0.9863 - val_loss: 0.7216 - val_acc: 0.8189
Epoch 21/100
187/187 [==============================] - 96s 513ms/step - loss: 0.4132 - acc: 0.9908 - val_loss: 0.7143 - val_acc: 0.8199
Epoch 22/100
187/187 [==============================] - 96s 515ms/step - loss: 0.4050 - acc: 0.9936 - val_loss: 0.7109 - val_acc: 0.8233
Epoch 23/100
187/187 [==============================] - 96s 515ms/step - loss: 0.4040 - acc: 0.9928 - val_loss: 0.7118 - val_acc: 0.8203
Epoch 24/100
187/187 [==============================] - 96s 511ms/step - loss: 0.3989 - acc: 0.9930 - val_loss: 0.7194 - val_acc: 0.8165
Epoch 25/100
187/187 [==============================] - 97s 517ms/step - loss: 0.3933 - acc: 0.9946 - val_loss: 0.7163 - val_acc: 0.8155
Epoch 26/100
187/187 [==============================] - 97s 516ms/step - loss: 0.3884 - acc: 0.9957 - val_loss: 0.7225 - val_acc: 0.8148
Epoch 27/100
187/187 [==============================] - 95s 510ms/step - loss: 0.3876 - acc: 0.9959 - val_loss: 0.7224 - val_acc: 0.8179
情节本身看起来像是过度拟合,但我已经采取了很多措施来修复过度拟合,但似乎都不起作用。这是我的模型:
# transfer learning with ResNet50
base_model=ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# function to finetune model
def build_finetune_model(base_model, dropout, fc_layers, num_classes):
# make base model untrainable
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = Flatten()(x)
# add dense layers
for fc in fc_layers:
# use regularizer
x = Dense(fc, use_bias=False, kernel_regularizer=l2(0.003))(x)
# add batch normalization
x = BatchNormalization()(x)
x = Activation('relu')(x)
# add dropout
x = Dropout(dropout)(x)
# New softmax layer
x = Dense(num_classes, use_bias=False)(x)
x = BatchNormalization()(x)
predictions = Activation('softmax')(x)
finetune_model = Model(inputs=base_model.input, outputs=predictions)
return finetune_model
FC_LAYERS = [1024, 1024]
dropout = 0.5
model = build_finetune_model(base_model, dropout=dropout, fc_layers=FC_LAYERS,num_classes=len(categories))
我正在调整类(class)权重,并设置了非常低的学习率,希望能减慢学习速度。
model.compile(optimizer=Adam(lr=0.000005),loss='categorical_crossentropy',metrics=['accuracy'], weighted_metrics=class_weight)
令我感到非常困惑的是,验证准确度一开始就如此之高(明显高于训练准确度),并且在整个训练过程中几乎没有提高。正如之前提到的,它似乎过度拟合,但我添加了 dropout、批量归一化和正则化器,它似乎不起作用。通过水平翻转、随机裁剪、随机亮度和旋转来增强数据也不会显着改变准确性。为我的训练数据关闭 ImageDataGenerator().flow_from_directory()
中的数据随机播放,使模型训练的训练准确度约为 25%,验证准确度<50%(编辑:准确度似乎如此低,因为在这种情况下学习率太低)。
同样,该模型在新的测试数据上表现得非常好。我希望提高验证准确性,并希望了解神经网络为何会出现这种行为。
最佳答案
您的模型过度拟合。您可能想在图像模型上使用数据增强。例如使用 ImageDataGenerator ( https://keras.io/preprocessing/image/ ) 随机移动、旋转和裁剪图像。
SGD 试图找到尽可能最简单的方法来最小化数据集上的损失函数;给定足够大的数据点集,它被迫提出一个通用的解决方案;但只要有可能,DNN 就会倾向于“记住”输入,因为这是减少损失的最简单方法。退出和正则化确实有帮助,但最终重要的是验证指标。当然,假设您的验证集正确平衡。
关于machine-learning - 验证准确性停滞,而训练准确性提高,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56935363/
我正在比较工作簿中的工作表。该工作簿有两张名为 PRE 和 POST 的工作表,每张工作表都有相同的 19 列。行数每天都不同,但特定一天的两张表的行数相同。该宏将 PRE 工作表中的每一行与 POS
我有一个对象数组,我一次循环遍历该数组一个对象,然后进行几次检查以查看该数组中的每个对象是否满足特定条件,如果该对象满足此条件,则复制一个属性将此对象放入数组中(该属性还包含另一个对象)。 for(v
我正在编写一个必须非常快的应用程序。我使用 Qt 5.5 和 Qt Creator,Qt 的 64 位 MSVC2013 编译版本。 我使用非常困倦的 CS 来分析我的应用程序,我看到占用最多独占时间
我有以下 CountDownTimer 在我的 Android 应用程序中不断运行。 CountDownTimer timer_status; timer_status = new CountDown
有一个优化问题,我必须调用随机森林回归器的预测函数数千次。 from sklearn.ensemble import RandomForestRegressor rfr = RandomForestR
我正在努力提高现有 Asp.Net Web 应用程序的数据访问层的性能。场景是。 它是一个基于 Web 的 Asp.Net 应用程序。 数据访问层使用 NHibernate 1.2 构建并作为 WCF
我在我的 Intel Edison 上运行 Debian,并尝试使用 ffmpeg 通过 USB 网络摄像头捕获视频。我正在使用的命令是: ffmpeg -f video4linux2 -i /dev
我有一个 For循环遍历整数 1 到 9 并简单地找到与该整数对应的最底部的条目(即 1,1,1,2,3,4,5 将找到第三个“1”条目)并插入一个空白行。我将数字与仅对应于此代码的应用程序的字符串“
我有一个带有非规范化架构(1 个表)的 postgresql 数据库,其中包含大约 400 万个条目。现在我有这个查询: SELECT count(*) AS Total, (SELECT c
在 Ltac 中实现复杂的策略时,有一些 Ltac 命令或策略调用我预计会失败以及预期失败(例如终止 repeat 或导致回溯)。这些故障通常在故障级别 0 时引发。 更高级别引发的故障“逃避”周
我正在尝试提高 ansible playbook 的性能。我有一个测试剧本如下: --- - name: Test hosts: localhost connection: local g
我正在使用 axios从 Azure 存储 Blob 下载文件 (~100MB)。 axios({ method: 'get', url: uri, onDownloadProgress:
我有一个 ClojureScript 程序,主要对集合执行数学计算。它是在惯用的、独立于主机的 Clojure 中开发的,因此很容易对其进行基准测试。令我惊讶的是(与答案对 Which is fast
我有一个程序必须在硬件允许的情况下尽快发出数千个 http 请求。在现实世界中,这些连接中的每一个都将连接到一个离散的服务器,但我已经编写了一个测试程序来帮助我模拟负载(希望如此)。 我的程序使用 A
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在计算 Clojure 中 3d 点云的边界框。点云表示为 Java 原始浮点数组,点云中的每个点都使用 4 个浮点存储,其中最后一个浮点未使用。像这样: [x0 y0 z0 u0 x1 y1
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我正在尝试使用rayshader 包制作图像。我很高兴能够使用如下代码创建一个 png 文件: library(ggplot2) library(rayshader) example_plot <-
更新 显然,jQuery 模板可以被编译,并且它有助于显示带有 if 语句 的模板的性能 here . 但是如图here ,预编译的 jQuery 模板对我的情况没有多大作用,因为我的模板不包含逻辑
我是编程新手。我有一个启用分页的 ScrollView ,其中包含许多页面(最多十个),并且在每个页面上都有一个自定义按钮。每个自定义按钮都有一个自定义图像。我在 Interface Builder
我是一名优秀的程序员,十分优秀!