gpt4 book ai didi

python - Keras自动编码器: validation loss > training loss - but performing well on testing dataset

转载 作者:行者123 更新时间:2023-11-30 09:27:53 27 4
gpt4 key购买 nike

简而言之:

我训练了一个自动编码器,其验证损失始终高于其训练损失(见附图)。 as - Autoencoder我认为这是过度拟合的信号。然而,我的自动编码器在测试数据集上表现良好。我想知道是否:

1)引用下面提供的网络架构,任何人都可以提供有关如何减少验证损失的见解(以及验证损失如何可能远高于训练损失,尽管性能良好)自动编码器在测试数据集上表现良好);

2)如果训练和验证损失之间存在差距实际上是一个问题(当测试数据集上的性能实际上很好时)。

详细信息:

我在 Keras 中编写了深度自动编码器(代码如下)。架构为2001(输入层) - 1000 - 500 - 200 - 50 - 200 - 500 - 1000 - 2001(输出层)。我的样本是时间的一维函数。它们每个都有 2001 个时间分量。我有 2000 个样本,其中 1500 个用于训练,500 个用于测试。在 1500 个训练样本中,其中 20%(即 300 个)用作验证集。我将训练集标准化,去除平均值并除以标准差。我还使用训练数据集的平均值和标准差来标准化测试数据集。

我使用 Adamax 优化器和均方误差作为损失函数来训练自动编码器。

from tensorflow.keras.layers import Input, Dense, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras import optimizers

import numpy as np
import copy


# data
data = # read my input samples. They are 1d functions of time and I have 2000 of them.
# Each function has 2001 time components

# shuffling data before training
import random
random.seed(4)
random.shuffle(data)

# split training (1500 samples) and testing (500 samples) dataset
X_train = data[:1500]
X_test = data[1500:]

# normalize training and testing set using mean and std deviation of training set
X_mean = X_train.mean()
X_train -= X_mean
X_std = X_train.std()
X_train /= X_std

X_test -= X_mean
X_test /= X_std


### MODEL ###

# Architecture

# input layer
input_shape = [X_train.shape[1]]
X_input = Input(input_shape)

# hidden layers

x = Dense(1000, activation='tanh', name='enc0')(X_input)
encoded = Dense(500, activation='tanh', name='enc1')(x)
encoded_2 = Dense(200, activation='tanh', name='enc2')(encoded)
encoded_3 = Dense(50, activation='tanh', name='enc3')(encoded_2)
decoded_2 = Dense(200, activation='tanh', name='dec2')(encoded_3)
decoded_1 = Dense(500, activation='tanh', name='dec1')(decoded_2)
x2 = Dense(1000, activation='tanh', name='dec0')(decoded_1)

# output layer
decoded = Dense(input_shape[0], name='out')(x2)

# the Model
model = Model(inputs=X_input, outputs=decoded, name='autoencoder')

# optimizer
opt = optimizers.Adamax()
model.compile(optimizer=opt, loss='mse', metrics=['acc'])
print(model.summary())

###################

### TRAINING ###

epochs = 1000
# train the model
history = model.fit(x = X_train, y = X_train,
epochs=epochs,
batch_size=100,
validation_split=0.2) # using 20% of training samples for validation

# Testing
prediction = model.predict(X_test)
for i in range(len(prediction)):
prediction[i] = np.multiply(prediction[i], X_std) + X_mean

loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(epochs)
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
plt.close()

最佳答案

2) if it is actually a problem that there is this gap between training and validation loss (when the performance on the testing dataset is actually good).

这只是泛化差距,即训练集和验证集之间的预期性能差距;引用最近的blog post by Google AI :

An important concept for understanding generalization is the generalization gap, i.e., the difference between a model’s performance on training data and its performance on unseen data drawn from the same distribution.

.

I would think that this is a signal of overfitting. However, my Autoencoder performs well on the testing dataset.

确实不是,但原因并不完全是你想象的那样(更不用说“好”是一个高度主观的术语)。

过度拟合的明显特征是验证损失开始增加,而训练损失持续减少,即:

enter image description here

你的图表没有显示这样的行为;另外,请注意上图中曲线之间的间隙(双关语)(改编自 Wikipedia entry on overfitting )。

how it is possible that the validation loss is much higher than the training one, despite the performance of the Autoencoder being good on the testing dataset

这里绝对没有矛盾;请注意,您的训练损失几乎为零,这本身并不一定令人惊讶,但如果验证损失接近于零,那肯定会令人惊讶。再说一遍,“好”是一个非常主观的术语。

换句话说,您提供的信息中没有任何内容表明您的模型有问题......

关于python - Keras自动编码器: validation loss > training loss - but performing well on testing dataset,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58329059/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com