- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经实现了一个 CNN,用于使用加速度计数据检测人类事件,我的模型运行得非常好,但是当我在张量板上可视化我的 graphgh 时,一切似乎都被断开了。现在我没有使用 Namescopes
但即使没有它 grpagh 也应该有意义吧?
编辑 实现 @user1735003 给出的答案后,这是输出。我仍然不明白的是为什么我得到左侧的所有节点
我实现的是:我有两个卷积层和两个最大池层,最重要的是我有两个带有 1024 和 512 神经元的隐藏层。
所以这是我的代码:
#Weights
def init_weights(shape):
init_random_dist = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(init_random_dist)
#Bias
def init_bias(shape):
init_bias = tf.constant(0.1,shape=shape)
return tf.Variable(init_bias)
def conv1d(x,weights):
#x is input accelration data and W is corresponding weight
return tf.nn.conv1d(value=x,filters = weights,stride=1,padding='VALID')
def convolution_layer(input_x,shape):
w1 = init_weights(shape)
b = init_bias([shape[2]])
return tf.nn.relu(conv1d(input_x,weights=w1)+b)
def normal_full_layer(input_layer,size):
input_size = int(input_layer.get_shape()[1])
W = init_weights([input_size, size])
b = init_bias([size])
return tf.matmul(input_layer, W) +b
x = tf.placeholder(tf.float32,shape=[None ,window_size,3]) #input tensor with 3 input channels
y = tf.placeholder(tf.float32,shape=[None,6]) #Labels
con_layer_1 = convolution_layer(x,shape=[4,3,32])#filter of shape [filter_width, in_channels, out_channels]
max_pool_1=tf.layers.max_pooling1d(inputs=con_layer_1,pool_size=2,strides=2,padding='Valid')
con_layer_2 = convolution_layer(max_pool_1,shape=[4,32,64])
max_pool_2 = tf.layers.max_pooling1d(inputs=con_layer_2,pool_size=2,strides=2,padding='Valid')
flat = tf.reshape(max_pool_2,[-1,max_pool_2.get_shape()[1]*max_pool_2.get_shape()[2]])
fully_conected = tf.nn.relu(normal_full_layer(flat,1024))
second_hidden_layer = tf.nn.relu(normal_full_layer(fully_conected,512))
hold_prob = tf.placeholder(tf.float32)
full_one_dropout = tf.nn.dropout(second_hidden_layer,keep_prob=hold_prob)
y_pred = normal_full_layer(full_one_dropout,6)
pred_softmax = tf.nn.softmax(y_pred)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_pred))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train = optimizer.minimize(cross_entropy)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
filename="./summary_log11/run"
summary_writer = tf.summary.FileWriter(filename, graph_def=sess.graph_def)
for i in range(5000):
batch_x,batch_y = next_batch(100,X_train,y_train)
sess.run(train, feed_dict={x: batch_x, y: batch_y, hold_prob: 0.5})
# PRINT OUT A MESSAGE EVERY 100 STEPS
if i%100 == 0:
print('Currently on step {}'.format(i))
print('Accuracy is:')
# Test the Train Model
matches = tf.equal(tf.argmax(y_pred,1),tf.argmax(y,1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))
print(sess.run(acc,feed_dict={x:X_test,y:y_test,hold_prob:1.0}))
print('\n')
最佳答案
尝试将节点组织到范围中。这将帮助 Tensorboard 找出你的图形层次结构。例如,
with tf.variable_scope('input'):
x = tf.placeholder(tf.float32,shape=[None ,window_size,3]) #input tensor with 3 input channels
y = tf.placeholder(tf.float32,shape=[None,6]) #Labels
with tf.variable_scope('net'):
con_layer_1 = convolution_layer(x,shape=[4,3,32])#filter of shape [filter_width, in_channels, out_channels]
max_pool_1=tf.layers.max_pooling1d(inputs=con_layer_1,pool_size=2,strides=2,padding='Valid')
con_layer_2 = convolution_layer(max_pool_1,shape=[4,32,64])
max_pool_2 = tf.layers.max_pooling1d(inputs=con_layer_2,pool_size=2,strides=2,padding='Valid')
flat = tf.reshape(max_pool_2,[-1,max_pool_2.get_shape()[1]*max_pool_2.get_shape()[2]])
fully_conected = tf.nn.relu(normal_full_layer(flat,1024))
second_hidden_layer = tf.nn.relu(normal_full_layer(fully_conected,512))
hold_prob = tf.placeholder(tf.float32)
full_one_dropout = tf.nn.dropout(second_hidden_layer,keep_prob=hold_prob)
y_pred = normal_full_layer(full_one_dropout,6)
pred_softmax = tf.nn.softmax(y_pred)
with tf.variable_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_pred))
with tf.variable_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train = optimizer.minimize(cross_entropy)
关于python - 为什么我的 Tensorboard 图中所有内容都断开连接?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50435336/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!